A set of electron time-of-flight spectrometers for high-resolution angle-resolved spectroscopy was developed for the Small Quantum Systems (SQS) instrument at the SASE3 soft X-ray branch of the European XFEL. The resolving power of this spectrometer design is demonstrated to exceed 10 000 (E/ΔE), using the well known Ne 1s3p resonant Auger spectrum measured at a photon energy of 867.11 eV at a third-generation synchrotron radiation source.
View Article and Find Full Text PDFIn this paper the back-side-illuminated Percival 2-Megapixel (P2M) detector is presented, along with its characterization by means of optical and X-ray photons. For the first time, the response of the system to soft X-rays (250 eV to 1 keV) is presented. The main performance parameters of the first detector are measured, assessing the capabilities in terms of noise, dynamic range and single-photon discrimination capability.
View Article and Find Full Text PDFWe present a systematic 2D spatial-coherence analysis of the soft-X-ray beamline P04 at PETRA III for various beamline configurations. The influence of two different beam-defining apertures on the spatial coherence properties of the beam is discussed and optimal conditions for coherence-based experiments are found. A significant degradation of the spatial coherence in the vertical direction has been measured and sources of this degradation are identified and discussed.
View Article and Find Full Text PDFCommissioning and first operation of an angle-resolved photoelectron spectrometer for non-invasive shot-to-shot diagnostics at the European XFEL soft X-ray beamline are described. The objective with the instrument is to provide the users and operators with reliable pulse-resolved information regarding photon energy and polarization that opens up a variety of applications for novel experiments but also hardware optimization.
View Article and Find Full Text PDFElectron transfer across proteins plays an important role in many biological processes, including those relevant for the conversion of solar photons to chemical energy. Previous studies demonstrated the generation of photocurrents upon light irradiation in a number of photoactive proteins, such as photosystem I or bacteriorhodopsin. Here, it is shown that Sn-cytochrome c layers act as reversible and efficient photoelectrochemical switches upon integration into large-area solid-state junctions.
View Article and Find Full Text PDFThe performance of organic electronic devices can be significantly improved by modifying metal electrodes with organic monolayers, which alter the physical and chemical nature of the interface between conductor and semiconductor. In this paper we examine a series of 12 phosphonic acid compounds deposited on the native oxide layer of aluminum (AlOx/Al), an electrode material with widespread applications in organic electronics. This series includes dodecylphosphonic acid as a reference and 11 benzylphosphonic acids, seven of which are fluorinated, including five newly synthesized derivatives.
View Article and Find Full Text PDFProteorhodopsins (PRs) found in marine microbes are the most abundant retinal-based photoreceptors on this planet. PR variants show high levels of environmental adaptation, as their colors are tuned to the optimal wavelength of available light. The two major green and blue subfamilies can be interconverted through a L/Q point mutation at position 105.
View Article and Find Full Text PDFThis paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C(8)H(5)F) and dissociating, laser-aligned 1,4-dibromobenzene (C(6)H(4)Br(2)) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.
View Article and Find Full Text PDFThe alignment of the electrode Fermi level with the valence or conduction bands of organic semiconductors is a key parameter controlling the efficiency of organic light-emitting diodes, solar cells, and printed circuits. Here, we introduce a class of organic molecules that form highly robust dipole layers, capable of shifting the work function of noble metals (Au and Ag) down to 3.1 eV, that is, ∼1 eV lower than previously reported self-assembled monolayers.
View Article and Find Full Text PDFThe mammalian visual dim-light photoreceptor rhodopsin is considered a prototype G protein-coupled receptor. Here, we characterize the kinetics of its light-activation process. Milligram quantities of α,ε-(15)N-labeled tryptophan rhodopsin were produced in stably transfected HEK293 cells.
View Article and Find Full Text PDFBackground: Tobacco is a leading environmental factor in the initiation of respiratory diseases and causes chronic obstructive pulmonary disease (COPD). Suppressor of cytokine signaling (SOCS) family members are involved in the pathogenesis of many inflammatory diseases and SOCS-3 has been shown to play an important role in the regulation, onset and maintenance of airway allergic inflammation indicating that SOCS-3 displays a potential therapeutic target for anti-inflammatory respiratory drugs development. Since chronic obstructive pulmonary disease (COPD) is also characterized by inflammatory changes and airflow limitation, the present study assessed the transcriptional expression of SOCS-3 in COPD.
View Article and Find Full Text PDFThe proteorhodopsin family consists of retinal proteins of marine bacterial origin with optical properties adjusted to their local environments. For green proteorhodopsin, a highly specific mutation in the EF loop, A178R, has been found to cause a surprisingly large redshift of 20 nm despite its distance from the chromophore. Here, we analyze structural and functional consequences of this EF loop mutation by time-resolved optical spectroscopy and solid-state NMR.
View Article and Find Full Text PDFRetinylidene photoreceptors are ubiquitously present in marine protists as first documented by the identification of green proteorhodopsin (GPR). We present a detailed investigation of a rhodopsin from the protist Oxyrrhis marina (OR1) with respect to its spectroscopic properties and to its vectorial proton transport. Despite its homology to GPR, OR1's features differ markedly in its pH dependence.
View Article and Find Full Text PDFOligoanilines are interesting candidates for organic electronics, as their conductivity can be varied by several orders of magnitude upon protonic doping. Here we demonstrate that tetraaniline self-assembled monolayers exhibit an unprecedented conductance on/off ratio of ∼710 (at +1 V) upon doping of the layers from the emeraldine base to the emeraldine salt form. Furthermore, a pronounced asymmetry in the current-voltage characteristics indicates dynamic doping of the tetraaniline layer by protons generated through field-enhanced dissociation of water molecules, a phenomenon known as the second Wien effect.
View Article and Find Full Text PDFTreatment of a gold surface with a solution of C18H37HgOTs under ambient conditions results in the formation of a covalently adsorbed monolayer containing alkyl chains attached directly to gold, Hg(0) atoms, and no tosyl groups. It is stable against a variety of chemical agents. When the initial deposition is performed at a positive applied potential and is followed by oxidative electrochemical stripping, the mercury can be completely removed, leaving a gold surface covered only with alkyl chains.
View Article and Find Full Text PDFFor membrane protein studies, nanodiscs have been shown to hold great potential in terms of preparing soluble samples while maintaining a lipid environment. Here, we describe the differences in lipid order and protein dynamics in MSP1 nanodiscs compared to lamellar preparations by solid-state NMR. For DMPC, an increase of the dipolar C-H lipid acyl chain order parameters in nanodiscs is observed in both gel- and liquid crystalline phases.
View Article and Find Full Text PDFWe characterized the dynamics of proteorhodopsin (PR), solubilized in diC7PC, a detergent micelle, by liquid-state NMR spectroscopy at T = 323 K. Insights into the dynamics of PR at different time scales could be obtained and dynamic hot spots could be identified at distinct, functionally relevant regions of the protein, including the BC loop, the EF loop, the N-terminal part of helix F and the C-terminal part of helix G. We further characterize the dependence of the photocycle on different detergents (n-Dodecyl β-D-maltoside DDM; 1,2-diheptanoyl-sn-glycero-3-phosphocholine diC7PC) by ultrafast time-resolved UV/VIS spectroscopy.
View Article and Find Full Text PDFNanodiscs (NDs) enable the analysis of membrane proteins (MP) in natural lipid bilayer environments. In combination with cell-free (CF) expression, they could be used for the co-translational insertion of MPs into defined membranes. This new approach allows the characterization of MPs without detergent contact and it could help to identify effects of particular lipids on catalytic activities.
View Article and Find Full Text PDFFemtosecond time-resolved absorption measurements were performed to investigate the influence of the pH, imidazole concentration, and point mutations on the isomerization process of Channelrhodopsin-2. Apart from the typical spectral characteristics of retinal isomerization, an additional absorption feature rises for the wild-type (wt) on a timescale from tens of ps to 1 ns within the spectral range of the photoproduct and is attributed to an equilibration between different K-intermediates. Remarkably, this absorption feature vanishes upon addition of imidazole or lowering the pH.
View Article and Find Full Text PDFThe ultrafast charge separation at the quantum dot (QD)/molecular acceptor interface was investigated in terms of acceptor concentration and the size of the QD. Time-resolved experiments revealed that the electron transfer (ET) from the photoexcited QD to the molecular acceptor methylviologen (MV(2+)) occurs on the fs time scale for large acceptor concentrations and that the ET rate is strongly reduced for low concentrations. The increase in the acceptor concentration is accompanied with a growth in the overlap of donor and acceptor wavefunctions, resulting in a faster reaction until the MV(2+) concentration reaches a saturation limit of 0.
View Article and Find Full Text PDFThe oriented assembly of molecules on metals is a requirement for rectification in planar metal-molecule-metal junctions. Here, we demonstrate how the difference in adsorption kinetics between dithiocarbamate and thioacetate anchor groups can be utilized to form oriented assemblies of asymmetric molecules that are bound to Au through the dithiocarbamate moiety. The free thioactate group is then used as a ligand to bind Au nanoparticles and to form the desired metal-molecule-metal junction.
View Article and Find Full Text PDFMolecular electronic devices require stable and highly conductive contacts between the metal electrodes and molecules. Thiols and amines are widely used to attach molecules to metals, but they form poor electrical contacts and lack the robustness required for device applications. Here, we demonstrate that dithiocarbamates provide superior electrical contact and thermal stability when compared to thiols on metals.
View Article and Find Full Text PDFThe structure and electrical properties of self-assembled monolayers of cyclic aromatic and aliphatic dithioacetamides (1,4-bis(mercaptoacetamido)benzene and 1,4-bis(mercaptoacetamido)cyclohexane) and of mixed dithioacetamide/alkanethiol monolayers are characterized by X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM) and contact angle goniometry. Both dithioacetamides are found to pack densely on Au(111), however the monolayers are poorly ordered as a result of hydrogen bond formation between the amide groups. The coassembly and the insertion method are compared for the formation of mixed dithioacetamide/alkanethiol monolayers.
View Article and Find Full Text PDFInsect Biochem Mol Biol
August 2005
Extracellular serine proteinase pathways control immune and homeostatic processes in insects. Our current knowledge of their components is limited-prophenoloxidase-activating proteinases (PAPs) are among the few hemolymph proteinases (HPs) with known functions. To identify components of proteinase systems in the hemolymph of Manduca sexta, we amplified cDNAs from larval fat body or hemocytes using degenerate primers coding for two conserved regions in S1 family serine proteinases.
View Article and Find Full Text PDFLectins interact with carbohydrates. They can function as pattern recognition receptors and play an important role in the innate immune system of animals. Previously, we have isolated two calcium-dependent (C-type) lectins, named immulectin-1 and -2, from the tobacco hornworm Manduca sexta.
View Article and Find Full Text PDF