Since the delivery of biologic drugs to the brain is greatly hampered by the existence of the blood-brain barrier (BBB), brain shuttles are being developed to enhance therapeutic efficacy. As we have previously shown, efficient and selective brain delivery was achieved with TXB2, a cross-species reactive, anti-TfR1 VNAR antibody. To further explore the limits of brain penetration, we conducted restricted randomization of the CDR3 loop, followed by phage display to identify improved TXB2 variants.
View Article and Find Full Text PDFSingle domain shark antibodies that bind to the transferrin receptor 1 (TfR1) on brain endothelial cells have been used to shuttle antibodies and other cargos across the blood brain barrier (BBB) to the brain. For these studies the TXB4 brain shuttle was fused to a TrkB neurotrophin receptor agonist antibody. The TXB4-TrkB fusion retained potent agonist activity at its cognate receptor and after systemic administration showed a 12-fold increase in brain levels over the unmodified antibody.
View Article and Find Full Text PDFSingle domain shark variable domain of new antigen receptor (VNAR) antibodies can offer a viable alternative to conventional Ig-based monoclonal antibodies in treating COVID-19 disease during the current pandemic. Here we report the identification of neutralizing single domain VNAR antibodies selected against the severe acute respiratory syndrome coronavirus 2 spike protein derived from the Wuhan variant using phage display. We identified 56 unique binding clones that exhibited high affinity and specificity to the spike protein.
View Article and Find Full Text PDFTransfer across the blood-brain barrier (BBB) remains a significant hurdle for the development of biopharmaceuticals with therapeutic effects within the central nervous system. We established a functional selection method to identify high affinity single domain antibodies to the transferrin receptor 1 (TfR1) with efficient biotherapeutic delivery across the BBB. A synthetic phage display library based on the variable domain of new antigen receptor (VNAR) was used for in vitro selection against recombinant human TfR1 ectodomain (rh-TfR1-ECD) followed by in vivo selection in mouse for brain parenchyma penetrating antibodies.
View Article and Find Full Text PDFTransferrin receptor 1 (TfR1) mediated transcytosis is an attractive strategy to enhance brain uptake of protein drugs, but translation remains a challenge. Here, a single domain shark antibody VNAR fragment (TXB2) with similar affinity to murine and human TfR1 was used to shuttle protein cargo into the brain. TXB2 was fused to a human IgG1 Fc domain (hFc) or to the amyloid-β (Aβ) antibody bapineuzumab (Bapi).
View Article and Find Full Text PDFB cell-activating factor (BAFF) plays a dominant role in the B cell homeostasis. However, excessive BAFF promotes the development of autoreactive B-cells and several antibodies have been developed to block its activity. Bispecific antibodies with added functionality represent the next wave of biologics that may be more effective in the treatment of complex autoimmune disease.
View Article and Find Full Text PDFAmyotrophic Lateral Sclerosis is a devastating neurological disease that is inevitably fatal after 3-5years duration. Treatment options are minimal and as such new therapeutic modalities are required. In this review, we discuss the role of the myostatin pathway as a modulator of skeletal muscle mass and therapeutic approaches using biological based therapies.
View Article and Find Full Text PDFIn amyotrophic lateral sclerosis (ALS), the progressive loss of motor neurons is accompanied by extensive muscle denervation, resulting in paralysis and ultimately death. Upregulation of amyloid beta (A4) precursor protein (APP) in muscle fibres coincides with symptom onset in both sporadic ALS patients and the SOD1(G93A) mouse model of familial ALS. We have further characterized this response in SOD1(G93A) mice and also revealed elevated levels of β-amyloid (Aβ) peptides in the SOD1(G93A) spinal cord, which were predominantly localized within motor neurons and their surrounding glial cells.
View Article and Find Full Text PDFOne of the major barriers to successful axon regeneration in the adult CNS is the presence of inhibitory molecules that originate from the myelin sheath and glial scar. So far, only a small number of pharmacological compounds have exhibited functional activity against CNS inhibitors in promoting axon regeneration after injury. To search for novel compounds that enhance neurite outgrowth in vitro, we initiated a screen of a collection of natural products.
View Article and Find Full Text PDFEndocannabinoids (eCBs) function as retrograde signaling molecules at synapses throughout the brain, regulate axonal growth and guidance during development, and drive adult neurogenesis. There remains a lack of genetic evidence as to the identity of the enzyme(s) responsible for the synthesis of eCBs in the brain. Diacylglycerol lipase-alpha (DAGLalpha) and -beta (DAGLbeta) synthesize 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain.
View Article and Find Full Text PDFThe N-terminal domain of NogoA, called amino-Nogo, inhibits axonal outgrowth and cell spreading via a largely unknown mechanism. In the present study, we show that amino-Nogo decreases Rac1 activity and inhibits fibroblast spreading. 12-O-Tetradecanoylphorbol-13-acetate-type tumor promoters, such as phorbol 12-myristate 13-acetate (PMA) and teleocidin, increase Rac1 activity and overcome the amino-Nogo-induced inhibition of cell spreading.
View Article and Find Full Text PDFThe diacylglycerol lipases (DAGLalpha/beta) synthesize 2-arachidonylglycerol (2-AG), the major endocannabinoid in the developing and adult brain (eCB). This lipid acts on cannabinoid receptors to regulate axonal growth and guidance, activity-dependent synaptic plasticity and adult neurogenesis, and can also protect neurons from excitotoxicity. 2-AG action is generally terminated by monoacylglycerol lipase (MAGL), however we know very little about the mechanisms that regulate neuronal sensitivity to eCBs.
View Article and Find Full Text PDFMany studies have indicated that the inability of adult mammalian central nervous system (CNS) to regenerate after injury is partly due to the existence of growth-inhibitory molecules associated with CNS myelin. Studies over the years have led to the identification of multiple myelin-associated inhibitors, among which Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (Omgp) represent potentially major contributors to CNS axon regeneration failure. Here we review in vitro and in vivo investigations into these inhibitory ligands and their functional mechanisms, focusing particularly on the neuronal receptors that mediate the inhibitory signals from these myelin molecules.
View Article and Find Full Text PDFMyostatin is a member of the transformating growth factor-beta (TGF-beta) superfamily of proteins and is produced almost exclusively in skeletal muscle tissue, where it is secreted and circulates as a serum protein. Myostatin acts as a negative regulator of muscle mass through the canonical SMAD2/3/4 signaling pathway. Naturally occurring myostatin mutants exhibit a 'double muscling' phenotype in which muscle mass is dramatically increased as a result of both hypertrophy and hyperplasia.
View Article and Find Full Text PDFThe subventricular zone (SVZ) is a major site of neurogenesis in the adult. We now show that ependymal and proliferating cells in the adult mouse SVZ express diacylglycerol lipases (DAGLs), enzymes that synthesise a CB1/CB2 cannabinoid receptor ligand. DAGL and CB2 antagonists inhibit the proliferation of cultured neural stem cells, and the proliferation of progenitor cells in young animals.
View Article and Find Full Text PDFWhile there is now substantial evidence that 5-HT(6) antagonism leads to significantly improved cognitive ability, the mechanism(s) and/or pathway(s) involved are poorly understood. We have evaluated the consequence of chronic administration of the 5-HT(6) receptor antagonists SB-271046 and SB-399885 on neural cell adhesion molecule polysialylation state (NCAM PSA), a neuroplastic mechanism necessary for memory consolidation. Quantitative analysis of NCAM PSA immunopositive neurons in the dentate gyrus of drug-treated animals revealed a dose-dependent increase in polysialylated cell frequency following treatment with both SB-271046 and SB-399885.
View Article and Find Full Text PDFGangliosides are key players in neuronal inhibition, with antibody-mediated clustering of gangliosides blocking neurite outgrowth in cultures and axonal regeneration post injury. In this study we show that the ganglioside GT1b can form a complex with the Nogo-66 receptor NgR1. The interaction is shown by analytical ultracentrifugation sedimentation and is mediated by the sialic acid moiety on GT1b, with mutations in FRG motifs on NgR1 attenuating the interaction.
View Article and Find Full Text PDFNogo receptor (NgR)-mediated control of axon growth relies on the central nervous system-specific type I transmembrane protein Lingo-1. Interactions between Lingo-1 and NgR, along with a complementary co-receptor, result in neurite and axonal collapse. In addition, the inhibitory role of Lingo-1 is particularly important in regulation of oligodendrocyte differentiation and myelination, suggesting that pharmacological modulation of Lingo-1 function could be a novel approach for nerve repair and remyelination therapies.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease leading to motor neuron cell death, but recent studies suggest that non-neuronal cells may contribute to the pathological mechanisms involved. Myostatin is a negative regulator of muscle growth whose function can be inhibited using neutralizing antibodies. In this study, we used transgenic mouse and rat models of ALS to test whether treatment with anti-myostatin antibody slows muscle atrophy, motor neuron loss, or disease onset and progression.
View Article and Find Full Text PDFSemaphorin 3A can inhibit axonal growth and induce neuronal apoptosis following binding to neuropilin-1, with the membrane proximal MAM (meprin, A5, mu) domain in neuropilin-1 playing a key role in the formation of a higher order receptor complex. If functional motifs on semaphorin 3A and/or the MAM domain can be identified, then small-constrained peptides might be developed as antagonists. We have scored peptide pairs for complementary hydropathy and antisense homology to identify a candidate functional motif in the Ig domain of semaphorin 3A, and in the MAM domain of neuropilin-1.
View Article and Find Full Text PDFThe inhibitory activity of myelin-associated glycoprotein (MAG) on neurons is thought to contribute to the lack of regenerative capacity of the CNS after injury. The interaction of MAG and its neuronal receptors mediates bidirectional signaling between neurons and oligodendrocytes. The novel finding that an anti-MAG monoclonal antibody not only possesses the ability to neutralise the inhibitory effect of MAG on neurons but also directly protects oligodendrocytes from glutamate-mediated oxidative stress-induced cell death is reported here.
View Article and Find Full Text PDFMyelin inhibitors activate a p75(NTR)-dependent signaling cascade in neurons that not only inhibits axonal growth but also prevents neurotrophins (NT) from stimulating growth. Most intriguingly, in addition to Trk receptors, neurotrophins also bind to p75(NTR). We have designed a "mini-neurotrophin" called B(AG) to activate TrkB in the absence of p75(NTR) binding.
View Article and Find Full Text PDFThe HAVDI and INPISGQ sequences have been identified as functional binding motifs in extracellular domain 1 (ECD1) of N-cadherin. Cyclic peptides containing a tandem repeat of the individual motifs function as N-cadherin agonists and stimulate neurite outgrowth. We now show that the cyclic peptide N-Ac-CHAVDINGHAVDIC-NH2 (SW4) containing the HAVDI sequence in tandem is efficacious also in promoting the in vitro survival of several populations of central nervous system neurons in paradigms where fibroblast growth factor-2 (FGF-2) is active.
View Article and Find Full Text PDF