Publications by authors named "Frank Rosowski"

Colloidal synthesis is an excellent tool for the study of cooperative effects in nanoalloys. In this work, bimetallic CuNi nanoparticles of defined size and composition are fully characterized and tested for the oxygen evolution reaction. Copper addition to nickel leads to modifications in the structural and electronic properties, showing a higher concentration of surface oxygen defects and formation of active Ni sites under reaction conditions.

View Article and Find Full Text PDF

Artificial intelligence (AI) can accelerate catalyst design by identifying key physicochemical descriptive parameters correlated with the underlying processes triggering, favoring, or hindering the performance. In analogy to genes in biology, these parameters might be called "materials genes" of heterogeneous catalysis. However, widely used AI methods require big data, and only the smallest part of the available data meets the quality requirement for data-efficient AI.

View Article and Find Full Text PDF

The atomic layer deposition of gallium and indium oxide was investigated on mesoporous silica powder and compared to the related aluminum oxide process. The respective oxide (GaO, InO) was deposited using sequential dosing of trimethylgallium or trimethylindium and water at 150 °C. In-situ thermogravimetry provided direct insight into the growth rates and deposition behavior.

View Article and Find Full Text PDF

Abstract: The performance in heterogeneous catalysis is an example of a complex materials function, governed by an intricate interplay of several processes (e.g., the different surface chemical reactions, and the dynamic restructuring of the catalyst material at reaction conditions).

View Article and Find Full Text PDF

Atomic layer deposition is a rising technique for catalyst synthesis and modification. Typically, the focus of ALD in catalysis is on supported metal nanoparticles. Here, the authors give mechanistic insights into the ALD of oxides on redox active catalysts by a combination of in situ analytics, such as XPS, DRIFTS and gravimetric measurements.

View Article and Find Full Text PDF

ZnO is a remarkable material with many applications in electronics and catalysis. Atomic layer deposition (ALD) of ZnO on flat substrates is an industrially applied and well-known process. Various studies describe the growth of ZnO layers on flat substrates.

View Article and Find Full Text PDF

A systematic variation of the SBA-15 synthesis conditions and their impact on the structural and chemical characteristics are reported. An incremental alteration of the hydrothermal aging temperature and time was used to induce changes of the highly ordered SBA-15 structure. Any effects on the total surface area, mesopores size, micropore contributions, and pore connectivity are amplified by a combined incremental increase of the NH F concentration.

View Article and Find Full Text PDF

The direct conversion of syngas to ethanol, typically using promoted Rh catalysts, is a cornerstone reaction in CO utilization and hydrogen storage technologies. A rational catalyst development requires a detailed structural understanding of the activated catalyst and the role of promoters in driving chemoselectivity. Herein, we report a comprehensive atomic-scale study of metal-promoter interactions in silica-supported Rh, Rh-Mn, and Rh-Mn-Fe catalysts by aberration-corrected (AC) TEM.

View Article and Find Full Text PDF

The well-defined particle morphology of crystalline MnWO catalysts investigated in the present study facilitates obtaining insight into the origin of selectivity limitations in alkane oxidation. Hydrothermal synthesis at variable pH values granted access to a series of phase-pure MnWO catalysts with particles ranging from cube-like (aspect ratio 1.5) to rod- or needle-like (aspect ratio 6.

View Article and Find Full Text PDF

The mutual interaction between Rh nanoparticles and manganese/iron oxide promoters in silica-supported Rh catalysts for the hydrogenation of CO to higher alcohols was analyzed by applying a combination of integral techniques including temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and Fourier transform infrared (FTIR) spectroscopy with local analysis by using high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) in combination with energy dispersive X-ray spectroscopy (EDX). The promoted catalysts show reduced CO adsorption capacity as evidenced through FTIR spectroscopy, which is attributed to a perforated core-shell structure of the Rh nano-particles in accordance with the microstructural analysis from electron microscopy. Iron and manganese occur in low formal oxidation states between 2+ and zero in the reduced catalysts as shown by using TPR and XAS.

View Article and Find Full Text PDF

A low amount of AlO was successfully deposited on an unordered, mesoporous SiO₂ powder using 1⁻3 ALD (Atomic Layer Deposition) cycles of trimethylaluminium and water. The process was realized in a self-built ALD setup featuring a microbalanceand a fixed particle bed. The reactor temperature was varied between 75, 120, and 200 °C.

View Article and Find Full Text PDF

The mechanism of C-H activation in selective oxidation reactions of short-chain alkane molecules over transition metal oxides is critically affected by the balance of acid-base and redox sites at the surface of the catalyst. Using the example of manganese tungstate we discuss how the relative abundance of these sites can be controlled via synthetic techniques. Phase-pure catalysts composed of the thermodynamic stable monoclinic MnWO4 phase have been prepared using hydrothermal synthesis.

View Article and Find Full Text PDF

The electronic and structural properties of vanadium-containing phases govern the formation of isolated active sites at the surface of these catalysts for selective alkane oxidation. This concept is not restricted to vanadium oxide. The deliberate use of hydrothermal techniques can turn the typical combustion catalyst manganese oxide into a selective catalyst for oxidative propane dehydrogenation.

View Article and Find Full Text PDF

This article addresses the fundamental question of whether concepts from semiconductor physics can be applied to describe the working mode of heterogeneous oxidation catalysts and whether they can be even used to discriminate between selective and unselective reaction pathways. Near-ambient-pressure X-ray photoelectron spectroscopy was applied to the oxidation of n-butane to maleic anhydride on the highly selective catalyst vanadyl pyrophosphate and the moderately selective MoVTeNbO(x) M1 phase. The catalysts were found to act like semiconducting gas sensors with a dynamic charge transfer between the bulk and the surface, as indicated by the gas-phase-dependent response of the work function, electron affinity, and the surface potential barrier.

View Article and Find Full Text PDF

We have developed a noncontact method to probe the electrical conductivity and complex permittivity of single and polycrystalline samples in a flow-through reactor in the temperature range of 20-500 °C and in various gas atmospheres. The method is based on the microwave cavity perturbation technique and allows the simultaneous measurement of microwave conductivity, permittivity and of the catalytic performance of heterogeneous catalysts without any need for contacting the sample with electrodes. The sensitivity of the method towards changes in bulk properties was proven by the investigation of characteristic first-order phase transitions of the ionic conductor rubidium nitrate in the temperature range between 20 and 320 °C, and by studying the temperature dependence of the complex permittivity and conductivity of a niobium(V)-doped vanadium-phosphorous-oxide catalyst for the selective oxidation of n-butane to maleic anhydride.

View Article and Find Full Text PDF