Biotechnol J
January 2020
Affinity chromatography (AC) has been used in large-scale bioprocessing for almost 40 years and is considered the preferred method for primary capture in downstream processing of various types of biopharmaceuticals. The objective of this mini-review is to provide an overview of a) the history of bioprocess AC, b) the current state of platform processes based on affinity capture steps, c) the maturing field of custom developed bioprocess affinity resins, d) the advantages of affinity capture-based downstream processing in comparison to other forms of chromatography, and e) the future direction for bioprocess scale AC. The use of AC can result in economic advantages by enabling the standardization of process development and the manufacturing processes and the use of continuous operations in flexible multiproduct production suites.
View Article and Find Full Text PDFDownstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements.
View Article and Find Full Text PDFIntegrated and continuous processing of recombinant proteins offers several advantages over batch or semi-batch processing used traditionally in the biotechnology industry. This paper presents a theoretical and practical approach for designing a periodic counter-current chromatography (PCC) operation as a continuous capture purification step that is integrated with a perfusion cell culture process. The constraints for continuous and optimal PCC operation govern the selection of residence time and number of columns.
View Article and Find Full Text PDFThe manufacturing of virus occurs at a modest scale in comparison to many therapeutic proteins mainly because a gene therapy dose is typically only µg of vector. Although modest in scale the generation of high purity virus is challenging due to low viral expression levels and the difficulties in adequately characterizing such a large and complex molecule. A 100 L bioreactor might produce only 100 mg of virus that must be separated from host and process impurities that are typically greater by several orders of magnitude.
View Article and Find Full Text PDFBiotechnol Bioeng
December 2012
In the current environment of diverse product pipelines, rapidly fluctuating market demands and growing competition from biosimilars, biotechnology companies are increasingly driven to develop innovative solutions for highly flexible and cost-effective manufacturing. To address these challenging demands, integrated continuous processing, comprised of high-density perfusion cell culture and a directly coupled continuous capture step, can be used as a universal biomanufacturing platform. This study reports the first successful demonstration of the integration of a perfusion bioreactor and a four-column periodic counter-current chromatography (PCC) system for the continuous capture of candidate protein therapeutics.
View Article and Find Full Text PDFIn this article, we describe a hydrophobic interaction chromatography (HIC) method to remodel the carbohydrates on recombinant human β-glucocerebrosidase (GCR) and the use of hydroxyl ethyl starch (HES) an ethylated starch polymer, to improve this process. GCR is a therapeutic protein used in the treatment of Gaucher disease, a life threatening condition in which patients lack sufficient functional levels of this enzyme. Gaucher disease is the most common inherited lysosomal storage disorder resulting in hepatomegaly, splenomegaly, and bone and lung pathology due to the accumulation of glucosylceramide in the lysosomes of macrophages (Beutler and Grabowski, 2001).
View Article and Find Full Text PDFAlthough immobilized metal affinity chromatography (IMAC) offers high capacity and protein selectivity it is not typically used commercially for the capture of native proteins from mammalian cell culture harvest. This is due mainly to the potential for low target recovery due to the presence of strong metal ion chelating species in the harvest that compete for the metal immobilized on the resin. To address this issue a buffer exchange step, such as tangential flow filtration (TFF), is added after harvest clarification and prior to IMAC to remove the interfering harvest components.
View Article and Find Full Text PDFBiotechnol Appl Biochem
October 2009
It is critical that manufacturers understand the impact of resin variability on process performance and consistency. Choosing an appropriate resin lot often requires running manufacturing load material on a scale-down processing step and showing that the product recovery and purity is within manufacturing experience. In the present study, the LR (lysozyme retention value), on the vendor Certificate of Analysis, was predictive of the performance of an HIC (hydrophobic interaction chromatography) resin in a complex manufacturing step.
View Article and Find Full Text PDFFlocculants have been employed for many years as aides in the clarification of wastewater, chemicals and food. Flocculants aggregate and agglutinate fine particles resulting in their settling from the liquid phase and a reduction in solution turbidity. These materials have not been widely used in the clarification of mammalian cell culture harvest.
View Article and Find Full Text PDF