Grating couplers are proposed for polarization-independent coupling of light between a single-mode fiber and a 220-nm-thick channel waveguide on silicon-on-insulator. The grating couplers have nonuniform grating periods that are composed of the intersection or union of a set of two near-optimal TE- and TM-grating periods. The proposed grating couplers have a coupling efficiency greater than 20% and polarization dependent loss (PDL) lower than 0.
View Article and Find Full Text PDFNear-infrared detectors based on metal-insulator-metal tunnel junctions integrated with planarized silicon nanowire waveguides are presented, which we believe to be the first of their kind. The junction is coupled to the waveguide via a thin-film metal antenna feeding a plasmonic travelling wave structure that includes the tunnel junction. These devices are inherently broadband; the design presented here operates throughout the 1500-1700 nm region.
View Article and Find Full Text PDFWe present complete experimental determinations of the tunnel barrier parameters (two barrier heights, junction area, dielectric constant, and extrinsic series resistance) as a function of temperature for submicrometer Ni-NiO-Ni thin-film tunnel junctions, showing that when the temperature-invariant parameters are forced to be consistent, good-quality fits are obtained between I-V curves and the Simmons equation for this very-low-barrier system (measured phi approximately 0.20 eV). A splitting of approximately 10 meV in the barrier heights due to the different processing histories of the upper and lower electrodes is clearly shown, with the upper interface having a lower barrier, consistent with the increased effect of the image potential at a sharper material interface.
View Article and Find Full Text PDF