Publications by authors named "Frank Pollmann"

We propose the strongly tilted Bose-Hubbard model as a natural platform to explore Hilbert-space fragmentation (HSF) and fracton dynamics in two dimensions in a setup and regime readily accessible in optical lattice experiments. Using a perturbative ansatz, we find HSF when the model is tuned to the resonant limit of on-site interaction and tilted potential. First, we investigate the quench dynamics of this system and observe numerically that the relaxation dynamics strongly depends on the chosen initial state-one of the key signatures of HSF.

View Article and Find Full Text PDF

The relaxation behaviour of isolated quantum systems taken out of equilibrium is among the most intriguing questions in many-body physics. Quantum systems out of equilibrium typically relax to thermal equilibrium states by scrambling local information and building up entanglement entropy. However, kinetic constraints in the Hamiltonian can lead to a breakdown of this fundamental paradigm owing to a fragmentation of the underlying Hilbert space into dynamically decoupled subsectors in which thermalization can be strongly suppressed.

View Article and Find Full Text PDF

Quantum fluctuations can inhibit long-range ordering in frustrated magnets and potentially lead to quantum spin liquid (QSL) phases. A prime example are gapless QSLs with emergent U(1) gauge fields, which have been understood to be described in terms of quantum electrodynamics in 2+1 dimension (QED). Despite several promising candidate materials, however, a complicating factor for their realisation is the presence of other degrees of freedom.

View Article and Find Full Text PDF

We study the dynamical large deviations of the classical stochastic symmetric simple exclusion process (SSEP) by means of numerical matrix product states. We show that for half filling, long-time trajectories with a large enough imbalance between the number hops in even and odd bonds of the lattice belong to distinct symmetry-protected topological (SPT) phases. Using tensor network techniques, we obtain the large deviation (LD) phase diagram in terms of counting fields conjugate to the dynamical activity and the total hop imbalance.

View Article and Find Full Text PDF

In the study of the thermalization of closed quantum systems, the role of kinetic constraints on the temporal dynamics and the eventual thermalization is attracting significant interest. Kinetic constraints typically lead to long-lived metastable states depending on initial conditions. We consider a model of interacting hardcore bosons with an additional kinetic constraint that was originally devised to capture glassy dynamics at high densities.

View Article and Find Full Text PDF

Quantum convolutional neural networks (QCNNs) have been introduced as classifiers for gapped quantum phases of matter. Here, we propose a model-independent protocol for training QCNNs to discover order parameters that are unchanged under phase-preserving perturbations. We initiate the training sequence with the fixed-point wave functions of the quantum phase and add translation-invariant noise that respects the symmetries of the system to mask the fixed-point structure on short length scales.

View Article and Find Full Text PDF

Intriguingly, quantum many-body systems may defy thermalization even without disorder. One example is so-called fragmented models, where the many-body Hilbert space fragments into dynamically disconnected subspaces that are not determined by the global symmetries of the model. In this Letter we demonstrate that the tilted one-dimensional Fermi-Hubbard model naturally realizes distinct effective Hamiltonians that are expected to support nonergodic behavior due to fragmentation, even at resonances between the tilt energy and the Hubbard on site interaction.

View Article and Find Full Text PDF

We extend the notions of multipole and subsystem symmetries to more general spatially modulated symmetries. We uncover two instances with exponential and (quasi)periodic modulations and provide simple microscopic models in one, two, and three dimensions. Seeking to understand their effect on the long-time dynamics, we numerically study a stochastic cellular automaton evolution that obeys such symmetries.

View Article and Find Full Text PDF

Topology in quantum many-body systems has profoundly changed our understanding of quantum phases of matter. The model that has played an instrumental role in elucidating these effects is the antiferromagnetic spin-1 Haldane chain. Its ground state is a disordered state, with symmetry-protected fourfold-degenerate edge states due to fractional spin excitations.

View Article and Find Full Text PDF

The thermalization of isolated quantum many-body systems is deeply related to fundamental questions of quantum information theory. While integrable or many-body localized systems display non-ergodic behavior due to extensively many conserved quantities, recent theoretical studies have identified a rich variety of more exotic phenomena in between these two extreme limits. The tilted one-dimensional Fermi-Hubbard model, which is readily accessible in experiments with ultracold atoms, emerged as an intriguing playground to study non-ergodic behavior in a clean disorder-free system.

View Article and Find Full Text PDF

The presence of global conserved quantities in interacting systems generically leads to diffusive transport at late times. Here, we show that systems conserving the dipole moment of an associated global charge, or even higher-moment generalizations thereof, escape this scenario, displaying subdiffusive decay instead. Modeling the time evolution as cellular automata for specific cases of dipole- and quadrupole conservation, we numerically find distinct anomalous exponents of the late time relaxation.

View Article and Find Full Text PDF

Many-body topological invariants, as quantized highly nonlocal correlators of the many-body wave function, are at the heart of the theoretical description of many-body topological quantum phases, including symmetry-protected and symmetry-enriched topological phases. Here, we propose and analyze a universal toolbox of measurement protocols to reveal many-body topological invariants of phases with global symmetries, which can be implemented in state-of-the-art experiments with synthetic quantum systems, such as Rydberg atoms, trapped ions, and superconducting circuits. The protocol is based on extracting the many-body topological invariants from statistical correlations of randomized measurements, implemented with local random unitary operations followed by site-resolved projective measurements.

View Article and Find Full Text PDF

Tensor-network states (TNS) are a promising but numerically challenging tool for simulating two-dimensional (2D) quantum many-body problems. We introduce an isometric restriction of the TNS ansatz that allows for highly efficient contraction of the network. We consider two concrete applications using this ansatz.

View Article and Find Full Text PDF

We consider the quench dynamics of a two-dimensional quantum dimer model and determine the role of its kinematic constraints. We interpret the nonequilibrium dynamics in terms of the underlying equilibrium phase transitions consisting of a Berezinskii-Kosterlitz-Thouless (BKT) transition between a columnar ordered valence bond solid (VBS) and a valence bond liquid (VBL), as well as a first-order transition between a staggered VBS and the VBL. We find that quenches from a columnar VBS are ergodic and both order parameters and spatial correlations quickly relax to their thermal equilibrium.

View Article and Find Full Text PDF

We investigate the dynamics of quantum entanglement after a global quench and uncover a qualitative difference between the behavior of the von Neumann entropy and higher Rényi entropies. We argue that the latter generically grow sub-ballistically, as ∝sqrt[t], in systems with diffusive transport. We provide strong evidence for this in both a U(1) symmetric random circuit model and in a paradigmatic nonintegrable spin chain, where energy is the sole conserved quantity.

View Article and Find Full Text PDF

The experimental realization of the Harper-Hofstadter model in ultracold atomic gases has placed fractional states of matter in these systems within reach-a fractional Chern insulator state (FCI) is expected to emerge for sufficiently strong interactions when half-filling the lowest band. The experimental setups naturally allow us to probe the dynamics of this topological state; yet little is known about its out-of-equilibrium properties. We explore, using density matrix renormalization group simulations, the response of the FCI state to spatially localized perturbations.

View Article and Find Full Text PDF

Employing large-scale quantum Monte Carlo simulations, we study the extended XXZ model on the kagome lattice. A Z_{2} quantum spin liquid phase with effective even Ising gauge field structure emerges from the delicate balance among three symmetry-breaking phases including stripe solid, staggered solid, and ferromagnet. This Z_{2} spin liquid is stabilized by an extended interaction related to the Rokhsar-Kivelson potential in the quantum dimer model limit.

View Article and Find Full Text PDF

Out-of-time-ordered (OTO) correlators have developed into a central concept quantifying quantum information transport, information scrambling, and quantum chaos. In this Letter, we show that such an OTO correlator can also be used to dynamically detect equilibrium as well as nonequilibrium phase transitions in Ising chains. We study OTO correlators of an order parameter both in equilibrium and after a quantum quench for different variants of transverse-field Ising models in one dimension, including the integrable one as well as nonintegrable and long-range extensions.

View Article and Find Full Text PDF

We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong nearest-neighbor interactions at 1/3 filling, the interplay between frustration and quantum fluctuations leads to a valence bond solid ground state. The system undergoes a quantum phase transition to a superfluid phase as the interaction strength is decreased.

View Article and Find Full Text PDF

We show that topology can protect exponentially localized, zero energy edge modes at critical points between one-dimensional symmetry-protected topological phases. This is possible even without gapped degrees of freedom in the bulk-in contrast to recent work on edge modes in gapless chains. We present an intuitive picture for the existence of these edge modes in the case of noninteracting spinless fermions with time-reversal symmetry (BDI class of the tenfold way).

View Article and Find Full Text PDF

We benchmark a variant of the recently introduced density matrix renormalization group (DMRG)-X algorithm against exact results for the localized random field XX chain. We find that the eigenstates obtained via DMRG-X exhibit a highly accurate l-bit description for system sizes much bigger than the direct, many-body, exact diagonalization in the spin variables is able to access. We take advantage of the underlying free fermion description of the XX model to accurately test the strengths and limitations of this algorithm for large system sizes.

View Article and Find Full Text PDF

We introduce a matrix-product state based method to efficiently obtain dynamical response functions for two-dimensional microscopic Hamiltonians. We apply this method to different phases of the Kitaev-Heisenberg model and identify characteristic dynamical features. In the ordered phases proximate to the spin liquid, we find significant broad high-energy features beyond spin-wave theory, which resemble those of the Kitaev model.

View Article and Find Full Text PDF

We study the effects of local perturbations on the dynamics of disordered fermionic systems in order to characterize time irreversibility. We focus on three different systems: the noninteracting Anderson and Aubry-André-Harper (AAH) models and the interacting spinless disordered t-V chain. First, we consider the effect on the full many-body wave functions by measuring the Loschmidt echo (LE).

View Article and Find Full Text PDF

We show that neutral anyonic excitations have a signature in spectroscopic measurements of materials: The low-energy onset of spectral functions near the threshold follows universal power laws with an exponent that depends only on the statistics of the anyons. This provides a route, using experimental techniques such as neutron scattering and tunneling spectroscopy, for detecting anyonic statistics in topologically ordered states such as gapped quantum spin liquids and hypothesized fractional Chern insulators. Our calculations also explain some recent theoretical results in spin systems.

View Article and Find Full Text PDF