Publications by authors named "Frank Peter Theil"

Biologics have emerged as a powerful and diverse class of molecular and cell-based therapies that are capable of replacing enzymes, editing genomes, targeting tumors, and more. As this complex array of tools arises a distinct set of challenges is rarely encountered in the development of small molecule therapies. Biotherapeutics tend to be big, bulky, polar molecules comprised of protein and/or nucleic acids.

View Article and Find Full Text PDF

The mechanisms of absorption, distribution, metabolism and elimination of small and large molecule therapeutics differ significantly from one another and can be explored within the framework of a physiologically based pharmacokinetic (PBPK) model. This paper briefly reviews fundamental approaches to PBPK modeling, in which drug kinetics within tissues and organs are explicitly represented using physiologically meaningful parameters. The differences in PBPK models applied to small/large molecule drugs are highlighted, thus elucidating differences in absorption, distribution and elimination properties between these two classes of drugs in a systematic manner.

View Article and Find Full Text PDF

New challenges and opportunities in nonclinical safety testing of biologics were discussed at the 3rd European BioSafe Annual General Membership meeting in November 2013 in Berlin: (i)Approaches to refine use of non-human primates in non-clinical safety testing of biologics and current experience on the use of minipigs as alternative non-rodent species.(ii)Tissue distribution studies as a useful tool to support pharmacokinetic/pharmacodynamic (PKPD) assessment of biologics, in that they provide valuable mechanistic insights at drug levels at the site of action.(iii)Mechanisms of nonspecific toxicity of antibody drug conjugates (ADC) and ways to increase the safety margins.

View Article and Find Full Text PDF

Nonclinical safety testing of new biotherapeutic entities represents its own challenges and opportunities in drug development. Hot topics in this field have been discussed recently at the 2nd Annual BioSafe European General Membership Meeting. In this feature article, discussions on the challenges surrounding the use of PEGylated therapeutic proteins, selection of cynomolgus monkey as preclinical species, unexpected pharmacokinetics of biologics and the safety implications thereof are summarized.

View Article and Find Full Text PDF

Having an understanding of drug tissue accumulation can be informative in the assessment of target organ toxicities; however, obtaining tissue drug levels from toxicology studies by bioanalytical methods is labor-intensive and infrequently performed. Additionally, there are no described methods for predicting tissue drug distribution for the experimental conditions in toxicology studies, which typically include non-steady-state conditions and very high exposures that may saturate several processes. The aim was the development of an algorithm to provide semiquantitative and quantitative estimates of tissue-to-plasma concentration ratios (Kp ) for several tissues from readily available parameters of pharmacokinetics (PK) such as volume of distribution (Vd ) and clearance of each drug, without performing tissue measurement in vivo.

View Article and Find Full Text PDF

A majority of human therapeutic antibody candidates show pharmacokinetic properties suitable for clinical use, but an unexpectedly fast antibody clearance is sometimes observed that may limit the clinical utility. Pharmacokinetic data in cynomolgus monkeys collected for a panel of 52 antibodies showed broad distribution of target-independent clearance values (2.4-61.

View Article and Find Full Text PDF

Drug delivery across the brain-blood interfaces is a complex process involving physicochemical drug properties, transporters, enzymes, and barrier dysfunction in diseased conditions. Intact blood-brain barrier (BBB) limits the entry of potentially harmful compounds into the brain but may also reduce the CNS permeability of therapeutic agents. BBB permeability is typically assessed by measuring brain-to-plasma ratio in rodents (referred to as B/P ratio, BB, or Kp, often calculated as logBB), an approach that suffers significant limitations as discussed in the present review.

View Article and Find Full Text PDF

The therapeutic rationale of antibody conjugates is the selective delivery of a cytotoxin to tumor cells via binding and internalization of the monoclonal antibodies to a specific cell-surface antigen, thereby enhancing the therapeutic index of the cytotoxin. The key structural and functional components of an antibody conjugate are the antibody, the linker and the cytotoxin (chemical or radionuclide) with each component being critical for the successful development of the conjugate. Considerable efforts have been made in understanding the pharmacokinetics, pharmacodynamics, tissue distribution, metabolism and pharmacologic effects of these complex macromolecular entities.

View Article and Find Full Text PDF

Purpose: To compare the pharmacokinetics (PK) of MNRP1685A, a human monoclonal antibody (mAb) against neuropilin-1 (NRP1), in mice, rats, monkeys, and cancer patients from a Phase I study to model with parallel linear and nonlinear clearances.

Methods: Binding characteristics of MNRP1685A in different species were evaluated using surface plasmon resonance technology. PK profiles of MNRP1685A after single and/or multiple doses in different species were analyzed using population analysis.

View Article and Find Full Text PDF

Purpose: Immunodeficient mice transplanted with subcutaneous tumors (xenograft or allograft) are widely used as a model of preclinical activity for the discovery and development of anticancer drug candidates. Despite their widespread use, there is a widely held view that these models provide minimal predictive value for discerning clinically active versus inactive agents. To improve the predictive nature of these models, we have carried out a retrospective population pharmacokinetic-pharmacodynamic (PK-PD) analysis of relevant xenograft/allograft efficacy data for eight agents (molecularly targeted and cytotoxic) with known clinical outcome.

View Article and Find Full Text PDF

Significant progress has been made in understanding pharmacokinetics (PK), pharmacodynamics (PD), as well as toxicity profiles of therapeutic proteins in animals and humans, which have been in commercial development for more than three decades. However, in the PK arena, many fundamental questions remain to be resolved. Investigative and bioanalytical tools need to be established to improve the translation of PK data from animals to humans, and from in vitro assays to in vivo readouts, which would ultimately lead to a higher success rate in drug development.

View Article and Find Full Text PDF

Subcutaneous (SC) delivery is a common route of administration for therapeutic monoclonal antibodies (mAbs) with pharmacokinetic (PK)/pharmacodynamic (PD) properties requiring long-term or frequent drug administration. An ideal in vivo preclinical model for predicting human PK following SC administration may be one in which the skin and overall physiological characteristics are similar to that of humans. In this study, the PK properties of a series of therapeutic mAbs following intravenous (IV) and SC administration in Göttingen minipigs were compared with data obtained previously from humans.

View Article and Find Full Text PDF

MNRP1685A (anti-NRP1) is a fully human IgG1 monoclonal antibody against neuropilin-1 (NRP1), a protein necessary for blood vessel maturation. MNRP1685A binds to free membrane-bound NRP1 (mNRP1) and circulating NRP1 (cNRP1). Total cNRP1 increased in a dose-dependent manner following anti-NRP1 administration in mice, rats, and monkeys.

View Article and Find Full Text PDF

The neonatal Fc receptor (FcRn) plays an important and well-known role in immunoglobulin G (IgG) catabolism; however, its role in the disposition of IgG after subcutaneous (SC) administration, including bioavailability, is relatively unknown. To examine the potential effect of FcRn on IgG SC bioavailability, we engineered three anti-amyloid β monoclonal antibody (mAb) reverse chimeric mouse IgG2a (mIgG2a) Fc variants (I253A.H435A, N434H and N434Y) with different binding affinities to mouse FcRn (mFcRn) and compared their SC bioavailability to that of the wild-type (WT) mAb in mice.

View Article and Find Full Text PDF

Both human epidermal growth factor receptor 2 (HER-2/neu) and VEGF overexpression correlate with aggressive phenotypes and decreased survival among breast cancer patients. Concordantly, the combination of trastuzumab (anti-HER2) with bevacizumab (anti-VEGF) has shown promising results in preclinical xenograft studies and in clinical trials. However, despite the known antiangiogenic mechanism of anti-VEGF antibodies, relatively little is known about their effects on the pharmacokinetics and tissue distribution of other antibodies.

View Article and Find Full Text PDF

Background And Purpose: Neuropilin-1 (NRP1) is a VEGF receptor that is widely expressed in normal tissues and is involved in tumour angiogenesis. MNRP1685A is a rodent and primate cross-binding human monoclonal antibody against NRP1 that exhibits inhibition of tumour growth in NPR1-expressing preclinical models. However, widespread NRP1 expression in normal tissues may affect MNRP1685A tumour uptake.

View Article and Find Full Text PDF

This is a commentary on the series of five manuscripts written as part of the Pharmaceutical Research and Manufacturers of America Clinical and Preclinical Development Committee initiative on predictive models of human pharmacokinetics (PK). In particular, we wish to comment on the third paper in the series, which describes the performance of prediction methods of human clearance (CL). Human CL prediction methods described in the third manuscript are fundamental to the work presented in manuscripts four and five on the prediction of human PK profiles.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are designed to combine the exquisite specificity of antibodies to target tumor antigens with the cytotoxic potency of chemotherapeutic drugs. In addition to the general chemical stability of the linker, a thorough understanding of the relationship between ADC composition and biological disposition is necessary to ensure that the therapeutic window is not compromised by altered pharmacokinetics (PK), tissue distribution, and/or potential organ toxicity. The six-transmembrane epithelial antigen of prostate 1 (STEAP1) is being pursued as a tumor antigen target.

View Article and Find Full Text PDF

The volume of distribution at steady state (Vss) of therapeutic proteins is usually assessed by non-compartmental or compartmental pharmacokinetic (PK) analysis wherein errors may arise due to the elimination of therapeutic proteins from peripheral tissues that are not in rapid equilibrium with the sampling compartment (usually blood). Here we explored another potential source of error in the estimation of Vss that is linked to the heterogeneity of therapeutic proteins which may consist of components (e.g.

View Article and Find Full Text PDF

Background: The identification of clinically meaningful and predictive models of disposition kinetics for cancer therapeutics is an ongoing pursuit in drug development. In particular, the growing interest in preclinical evaluation of anti-angiogenic agents alone or in combination with other drugs requires a complete understanding of the associated physiological consequences.

Methodology/principal Findings: Technescan™ PYP™, a clinically utilized radiopharmaceutical, was used to measure tissue vascular volumes in beige nude mice that were naïve or administered a single intravenous bolus dose of a murine anti-vascular endothelial growth factor (anti-VEGF) antibody (10 mg/kg) 24 h prior to assay.

View Article and Find Full Text PDF

Antibody pharmacokinetics and pharmacodynamics are often governed by biological processes such as binding to antigens and other cognate receptors. Emphasis must also be placed, however, on fundamental physicochemical properties that define antibodies as complex macromolecules, including shape, size, hydrophobicity, and charge. Electrostatic interactions between anionic cell membranes and the predominantly positive surface charge of most antibodies can influence blood concentration and tissue disposition kinetics in a manner that is independent of antigen recognition.

View Article and Find Full Text PDF

A general toxicity of basic drugs is related to phospholipidosis in tissues. Therefore, it is essential to predict the tissue distribution of basic drugs to facilitate an initial estimate of that toxicity. The objective of the present study was to further assess the original prediction method that consisted of using the binding to red blood cells measured in vitro for the unbound drug (RBCu) as a surrogate for tissue distribution, by correlating it to unbound tissue:plasma partition coefficients (Kpu) of several tissues, and finally to predict volume of distribution at steady-state (V(ss)) in humans under in vivo conditions.

View Article and Find Full Text PDF

The pharmacokinetics (PK) of therapeutic antibodies is determined by target and non-target mediated mechanisms. These antibody-specific factors need to be considered during prediction of human PK based upon preclinical information. Principles of allometric scaling established for small molecules using data from multiple animal species cannot be directly applied to antibodies.

View Article and Find Full Text PDF