A new class of potent PI3Kα inhibitors is identified based on aryl substituted morpholino-triazine scaffold. The identified compounds showed not only a high level of enzymatic and cellular potency in nanomolar range but also high oral bioavailability. The three lead molecules (based on their in vitro potency) when evaluated further for in vitro metabolic stability as well as pharmacokinetic profile led to the identification of 26, as a candidate for further development.
View Article and Find Full Text PDFOver activation of the PI3K/Akt/mTOR pathway is found in most cancer tumor types. Controlled regulation of this pathway using PI3K inhibitors can provide therapeutic significance in cancer treatment. Herein, we report the synthesis and evaluation of pyrrolotriazine based novel small molecules as pan-PI3K inhibitors.
View Article and Find Full Text PDFTwo new classes of diphenylether inhibitors of p38alpha MAP kinase are described. Both chemical classes are based on a common diphenylether core that is identified by simulated fragment annealing as one of the most favored chemotypes within a prominent hydrophobic pocket of the p38alpha ATP-binding site. In the fully elaborated molecules, the diphenylether moiety acts as an anchor occupying the deep pocket, while polar extensions make specific interactions with either the adenine binding site or the phosphate binding site of ATP.
View Article and Find Full Text PDF