An assay method for phthalate esters with a complex mixture of isomer of varying carbon numbers, such as di-isononyl phthalate (DINP) and di-isodecyl phthalate (DIDP), using gas chromatography-mass spectrometry (GC-MS) positive chemical ionization (PCI) with 5% ammonia in methane is described. GC-MS-PCI-NH3, unlike GC-MS electron ionization (EI) (GC-MS-EI) that produces generally m/z 149 ion as the main base peak and low intensity M(+) peaks, produces higher intensity (M + 1) ions that allow the determination of total (R + R') carbon number distributions based on the various R and R' alkyl groups of the di-esters moiety. The technique allows distinguishing among the various commercial DINP and DIDP plasticizers.
View Article and Find Full Text PDFSimultaneous and molecularly selective parts-per-billion detection of benzene, toluene, and xylenes (BTX) using a thermal desorption (TD)-FTIR hollow waveguide (HWG) trace gas sensor is demonstrated here for the first time combining laboratory calibration with real-world sample analysis in field. A calibration range of 100-1000 ppb analyte/N(2) was developed and applied for predicting the concentration of blinded environmental air samples within the same concentration range, and demonstrate close agreement with the validation method used here, GC-FID. The analyte concentration prediction capability of the TD-FTIR-HWG trace gas sensor also compares well with the industrial standard and other experimental techniques including GC-PID, ultrafast GC-FID, and GC-DMS, which were simultaneously operated in the field.
View Article and Find Full Text PDFA method for determining total biodiesel methyl and ethyl ester content in diesel fuels by supercritical fluid chromatography-flame ionization detection (SFC-FID) is developed. A silica column typically used for determining aromatics in conventional diesel fuels by ASTM D5186 is back-flushed after separation of the hydrocarbons to allow elution of the various esters as a single "total biodiesel" distinct peak. The modification concurrently allows the determination of total aromatic hydrocarbons and their distribution as mono- and polynuclear compounds, as described in the current version of D5186.
View Article and Find Full Text PDFValve based/flow modulated comprehensive two-dimensional gas chromatography-flame ionization detection (GC x GC-FID) was used for quantification of C6 through C12 aromatic hydrocarbons by carbon number in gasolines. A 0.53 mm i.
View Article and Find Full Text PDFWe report the first coupling of supercritical fluid chromatography (SFC) with field ionization time-of-flight high-resolution mass spectrometry (FI-ToF HRMS), in parallel with ultraviolet (UV) detection and flame ionization detection (FID), for rapid and quantitative analysis of petroleum middle distillates. SFC separates petroleum middle distillates into saturates and 1- to 3-ring aromatics. FI generates molecular ions for hydrocarbon species eluted from the SFC.
View Article and Find Full Text PDFSulfur-containing compounds in diesel have been speciated by comprehensive two-dimensional gas chromatography (GCxGC) with a sulfur chemiluminescence detector (SCD). The advantages of GCxGC technique are higher resolution and greater sensitivity. GCxGC-SCD can achieve the class separation of sulfur-containing compounds with an appropriate separation column combination.
View Article and Find Full Text PDF