Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime.
View Article and Find Full Text PDFWe demonstrate fabrication of nano-patterned thin ALD (Atomic layer deposition) membrane (suspended/transferable) by using a bi-layer resist process where the bottom layer resist acts as a sacrificial layer. This method enables an all dry deterministic transfer of nano-patterned ALD membrane on desired substrate, allowing assembly of multitude of hetero-structures and functionalities that are not yet accessible. Unlike conventional ways of achieving patterned alumina membrane reported in literature our technique requires significantly less fabrication steps and paves the way for novel ALD membrane-based technology.
View Article and Find Full Text PDFSilicon-vacancy (SiV) centers in diamond have attracted attention as highly stable fluorophores for sensing and as possible candidates for quantum information science. While prior studies have shown that the formation of hybrid diamond-metal structures can increase the rates of optical absorption and emission, many practical applications require diamond plasmonic structures that are stable in harsh chemical and thermal environments. Here, we demonstrate that Ag nanospheres, produced both in quasi-random arrays by thermal dewetting and in ordered arrays using electron-beam lithography, can be completely encapsulated with a thin diamond coating containing SiV centers, leading to hybrid core-shell nanostructures exhibiting extraordinary chemical and thermal stability as well as enhanced optical properties.
View Article and Find Full Text PDFSurface plasmons have found a wide range of applications in plasmonic and nanophotonic devices. The combination of plasmonics with three-dimensional photonic crystals has enormous potential for the efficient localization of light in high surface area photoelectrodes. However, the metals traditionally used for plasmonics are difficult to form into three-dimensional periodic structures and have limited optical penetration depth at operational frequencies, which limits their use in nanofabricated photonic crystal devices.
View Article and Find Full Text PDFQuantum dot-like single-photon sources in transition metal dichalcogenides (TMDs) exhibit appealing quantum optical properties but lack a well-defined atomic structure and are subject to large spectral variability. Here, we demonstrate electrically stimulated photon emission from individual atomic defects in monolayer WS and directly correlate the emission with the local atomic and electronic structure. Radiative transitions are locally excited by sequential inelastic electron tunneling from a metallic tip into selected discrete defect states in the WS bandgap.
View Article and Find Full Text PDFFree-standing ultrathin (∼2 nm) films of several oxides (AlO,TiO, and others) have been developed, which are mechanically robust and transparent to electrons with ≥ 200 eV and to photons. We demonstrate their applicability in environmental X-ray photoelectron and infrared spectroscopy for molecular level studies of solid-gas (≥1 bar) and solid-liquid interfaces. These films act as membranes closing a reaction cell and as substrates and electrodes for electrochemical reactions.
View Article and Find Full Text PDFThe electron beam (e-beam) in the scanning electron microscopy (SEM) provides an appealing mobile heating source for thermal metrology with spatial resolution of ∼1 nm, but the lack of systematic quantification of the e-beam heating power limits such application development. Here, we systemically study e-beam heating in LPCVD silicon nitride (SiN) thin-films with thickness ranging from 200 to 500 nm from both experiments and complementary Monte Carlo simulations using the CASINO software package. There is good agreement about the thickness-dependent e-beam energy absorption of thin-film between modeling predictions and experiments.
View Article and Find Full Text PDFMn doping of lead halide perovskites has garnered recent interest because it produces stable orange luminescence in tandem with perovskite emission. Here, we observe enhanced Mn luminescence at the edges of Mn-doped CsPbCl perovskite microplates and suggest an explanation for its origin using the high spatiotemporal resolution of time-resolved cathodoluminescence (TRCL) imaging. We reveal two luminescent decay components that we attribute to two different Mn populations.
View Article and Find Full Text PDFStructural defects in 2D materials offer an effective way to engineer new material functionalities beyond conventional doping. We report on the direct experimental correlation of the atomic and electronic structure of a sulfur vacancy in monolayer WS_{2} by a combination of CO-tip noncontact atomic force microscopy and scanning tunneling microscopy. Sulfur vacancies, which are absent in as-grown samples, were deliberately created by annealing in vacuum.
View Article and Find Full Text PDFControl of impurity concentrations in semiconducting materials is essential to device technology. Because of their intrinsic confinement, the properties of two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) are more sensitive to defects than traditional bulk materials. The technological adoption of TMDs is dependent on the mitigation of deleterious defects and guided incorporation of functional foreign atoms.
View Article and Find Full Text PDFChalcogen vacancies are generally considered to be the most common point defects in transition metal dichalcogenide (TMD) semiconductors because of their low formation energy in vacuum and their frequent observation in transmission electron microscopy studies. Consequently, unexpected optical, transport, and catalytic properties in 2D-TMDs have been attributed to in-gap states associated with chalcogen vacancies, even in the absence of direct experimental evidence. Here, we combine low-temperature non-contact atomic force microscopy, scanning tunneling microscopy and spectroscopy, and state-of-the-art ab initio density functional theory and GW calculations to determine both the atomic structure and electronic properties of an abundant chalcogen-site point defect common to MoSe and WS monolayers grown by molecular beam epitaxy and chemical vapor deposition, respectively.
View Article and Find Full Text PDFElectron microscopy has been instrumental in our understanding of complex biological systems. Although electron microscopy reveals cellular morphology with nanoscale resolution, it does not provide information on the location of different types of proteins. An electron-microscopy-based bioimaging technology capable of localizing individual proteins and resolving protein-protein interactions with respect to cellular ultrastructure would provide important insights into the molecular biology of a cell.
View Article and Find Full Text PDFNew photoresists are needed to advance extreme ultraviolet (EUV) lithography. The tailored design of efficient photoresists is enabled by a fundamental understanding of EUV induced chemistry. Processes that occur in the resist film after absorption of an EUV photon are discussed, and a new approach to study these processes on a fundamental level is described.
View Article and Find Full Text PDFWe report visualizations of the bidirectional near-field optical transfer function for a waveguide-coupled plasmonic transducer as a metrology technique essential for successful development for mass-fabricated near-field devices. Plasmonic devices have revolutionized the observation of nanoscale phenomena, enabling optical excitation and readout from nanoscale regions of fabricated devices instead of as limited by optical diffraction. Visualizations of the plasmonic transducer modes were acquired both by local near-field excitation of the antenna on the front facet of a waveguide using the focused electron beam of a scanning electron microscope as a probe of the near-field cathodoluminescence during far-field collection from the back facet of the waveguide, and by local mapping of the optical near-field for the same antenna design using scattering scanning near-field optical microscopy as a probe of the near-field optical mode density for far-field light focused into the back facet of the waveguide.
View Article and Find Full Text PDFIn situ electron microscopy provides remarkably high spatial resolution, yet electron beam irradiation often damages soft materials and perturbs dynamic processes, requiring samples to be very robust. Here, we instead noninvasively image the dynamics of metal and polymer nanoparticles in a liquid environment with subdiffraction resolution using cathodoluminescence-activated imaging by resonant energy transfer (CLAIRE). In CLAIRE, a free-standing scintillator film serves as a nanoscale optical excitation source when excited by a low energy, focused electron beam.
View Article and Find Full Text PDFWe report on the vibrational (Raman) spectrum and structural transformation of semiconducting pseudo-1D GaTe and ZrTe nanomaterials driven by ambient molecular interactions at the nanoscale by angle-resolved Raman spectroscopy, atomic force microscopy (AFM), and environmental X-ray photoelectron (XPS) measurements. The results show that tellurium containing pseudo-1D materials undergo drastic structural and physical changes within a week. During this process, new Raman peaks start to emerge and surface roughness increases substantially.
View Article and Find Full Text PDFIn order to increase computation power and efficiency, the semiconductor industry continually strives to reduce the size of features written using lithographic techniques. The planned switch to a shorter wavelength extreme ultraviolet (EUV) source presents a challenge for the associated photoresists, which in their current manifestation show much poorer photoabsorption cross sections for the same dose. Here we consider the critical role that an inner-shell electronic structure might play in enhancing photoabsorption cross sections, which one can control by the choice of substituent elements in the photoresist.
View Article and Find Full Text PDFThe distinct physical properties of hybrid organic-inorganic materials can lead to unexpected nonequilibrium phenomena that are difficult to characterize due to the broad range of length and time scales involved. For instance, mixed halide hybrid perovskites are promising materials for optoelectronics, yet bulk measurements suggest the halides reversibly phase separate upon photoexcitation. By combining nanoscale imaging and multiscale modeling, we find that the nature of halide demixing in these materials is distinct from macroscopic phase separation.
View Article and Find Full Text PDFThe sensitivity of semiconductor photodetectors is limited by photocarrier recombination during the carrier transport process. We developed a new photoactive material that reduces recombination by physically separating hole and electron charge carriers. This material has a specific detectivity (the ability to detect small signals) of 5 × 10(17) Jones, the highest reported in visible and infrared detectors at room temperature, and 4-5 orders of magnitude higher than that of commercial single-crystal silicon detectors.
View Article and Find Full Text PDFOur understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail.
View Article and Find Full Text PDFReduced-dimensionality materials for photonic and optoelectronic applications including energy conversion, solid-state lighting, sensing, and information technology are undergoing rapid development. The search for novel materials based on reduced-dimensionality is driven by new physics. Understanding and optimizing material properties requires characterization at the relevant length scale, which is often below the diffraction limit.
View Article and Find Full Text PDFTwo-dimensional monolayer transition metal dichalcogenide semiconductors are ideal building blocks for atomically thin, flexible optoelectronic and catalytic devices. Although challenging for two-dimensional systems, sub-diffraction optical microscopy provides a nanoscale material understanding that is vital for optimizing their optoelectronic properties. Here we use the 'Campanile' nano-optical probe to spectroscopically image exciton recombination within monolayer MoS2 with sub-wavelength resolution (60 nm), at the length scale relevant to many critical optoelectronic processes.
View Article and Find Full Text PDFExtreme ultraviolet lithography (EUVL) is the leading technology for enabling miniaturization of computational components over the next decade. Next-generation resists will need to meet demanding performance criteria of 10 nm critical dimension, 1.2 nm line-edge roughness, and 20 mJ cm(-2) exposure dose.
View Article and Find Full Text PDF