Introduction: Although the improving effect of nitric oxide (NO) donors has experimentally been demonstrated in shock, there are still no NO donor medications clinically available. Thiol-nitrosothiol-hydroxyethyl starch (S-NO-HES) is a novel molecule consisting of NO coupled to a thiolated derivative of hydroxyethyl starch (HES). It was aimed to assess the ability of S-NO-HES to serve as an NO donor under a variety of in vitro simulated physiologic conditions, which might be the first step to qualify this molecule as a novel type of NO donor-fluid.
View Article and Find Full Text PDFBackground: Modulation of inflammation and oxidative stress appears to limit sepsis-induced damage in experimental models. The kidney is one of the most sensitive organs to injury during septic shock. In this study, we evaluated the effect of N-acetylcysteine (NAC) administration in conjunction with fluid resuscitation on renal oxygenation and function.
View Article and Find Full Text PDFDerangement of nitric oxide (NO) metabolism represents one of the key mechanisms contributing to macro- and microcirculatory failure in sepsis. Sepsis-related therapy combining fluid resuscitation with administration of vasopressor and inotropic agents, however, does not guarantee correction of maldistributed nutritive perfusion between and within organs. Therefore, the differentiated and selective pharmacologic modulation of NO-mediated vascular function could play a useful role in hemodynamic management of patients with sepsis.
View Article and Find Full Text PDFIn recent years the interest in liver cell therapy has been increasing continuously, since the demand for whole liver transplantations in human beings far outweighs the supply. From the clinical point of view, transplantation of hepatocytes or hepatocyte-like cells may represent an alternative to orthotopic liver transplants in acute liver failure, for the correction of genetic disorders resulting in metabolically deficient states, and for late stage liver disease such as cirrhosis. Although the concept of cell therapy for various diseases of the liver is widely accepted, the practical approach in humans often remains difficult.
View Article and Find Full Text PDFPurpose: To design and evaluate a construct that allows regulated expression of the magnetic resonance (MR) imaging reporter gene human tyrosinase under control of the tetracycline response element.
Materials And Methods: A breast cancer cell line (MCF-7) was transfected with a plasmid that codes for the tetracycline-controlled transactivator and a new construct. In this construct, the reporter gene human tyrosinase is under control of the tetracycline response element, thus allowing suppression of gene expression by adding doxycycline (tetracycline switched off).