To comply with the increasing complexity of new mechatronic systems and stricter safety regulations, advanced estimation algorithms are currently undergoing a transformation towards higher model complexity. However, more complex models often face issues regarding the observability and computational effort needed. Moreover, sensor selection is often still conducted pragmatically based on experience and convenience, whereas a more cost-effective approach would be to evaluate the sensor performance based on its effective estimation performance.
View Article and Find Full Text PDFModel-based force estimation is an emerging methodology in the mechatronic community given the possibility to exploit physically inspired high-fidelity models in tandem with ready-to-use cheap sensors. In this work, an inverse input load identification methodology is presented combining high-fidelity multibody models with a Kalman filter-based estimator and providing the means for an accurate and computationally efficient state-input estimation strategy. A particular challenge addressed in this work is the handling of the redundant state-description encountered in common multibody model descriptions.
View Article and Find Full Text PDF