Objective: We present the first generic theoretical formulation of the co-adaptive learning problem and give a simple example of two interacting linear learning systems, a human and a machine.
Approach: After the description of the training protocol of the two learning systems, we define a simple linear model where the two learning agents are coupled by a joint loss function. The simplicity of the model allows us to find learning rules for both human and machine that permit computing theoretical simulations.
Objective: Neurotechnology can contribute to the usability assessment of products by providing objective measures of neural workload and can uncover usability impediments that are not consciously perceived by test persons. In this study, the neural processing effort imposed on the viewer of 3D television by shutter glasses was quantified as a function of shutter frequency. In particular, we sought to determine the critical shutter frequency at which the 'neural flicker' vanishes, such that visual fatigue due to this additional neural effort can be prevented by increasing the frequency of the system.
View Article and Find Full Text PDFThe increase in spatiotemporal resolution of neuroimaging devices is accompanied by a trend towards more powerful multivariate analysis methods. Often it is desired to interpret the outcome of these methods with respect to the cognitive processes under study. Here we discuss which methods allow for such interpretations, and provide guidelines for choosing an appropriate analysis for a given experimental goal: For a surgeon who needs to decide where to remove brain tissue it is most important to determine the origin of cognitive functions and associated neural processes.
View Article and Find Full Text PDFPreviously, modulations in power of neuronal oscillations have been functionally linked to sensory, motor and cognitive operations. Such links are commonly established by relating the power modulations to specific target variables such as reaction times or task ratings. Consequently, the resulting spatio-spectral representation is subjected to neurophysiological interpretation.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
August 2013
Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, and thus can be reliably estimated using data from other users and utilized to construct an invariant feature space. This novel approach to learning from other subjects aims to reduce the adverse effects of common nonstationarities, but does not transfer discriminative information.
View Article and Find Full Text PDFNeural recordings are non-stationary time series, i.e. their properties typically change over time.
View Article and Find Full Text PDFConnecting multiple testing with binary classification, we derive a false discovery rate-based classification approach for two-class mixture models, where the available data (represented as feature vectors) for each individual comparison take values in Rd for some d≥1 and may exhibit certain forms of autocorrelation. This generalizes previous findings for the independent case in dimension d=1. Two resulting classification procedures are described which allow for incorporating prior knowledge about class probabilities and for user-supplied weighting of the severity of misclassifying a member of the "0"-class as "1" and vice versa.
View Article and Find Full Text PDFThe goal of most functional Magnetic Resonance Imaging (fMRI) analyses is to investigate neural activity. Many fMRI analysis methods assume that the temporal dynamics of the hemodynamic response function (HRF) to neural activation is separable from its spatial dynamics. Although there is empirical evidence that the HRF is more complex than suggested by space-time separable canonical HRF models, it is difficult to assess how much information about neural activity is lost when assuming space-time separability.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
April 2012
Detecting changes in high-dimensional time series is difficult because it involves the comparison of probability densities that need to be estimated from finite samples. In this paper, we present the first feature extraction method tailored to change-point detection, which is based on an extended version of stationary subspace analysis. We reduce the dimensionality of the data to the most nonstationary directions, which are most informative for detecting state changes in the time series.
View Article and Find Full Text PDFEach method for imaging brain activity has technical or physiological limits. Thus, combinations of neuroimaging modalities that can alleviate these limitations such as simultaneous recordings of neurophysiological and hemodynamic activity have become increasingly popular. Multimodal imaging setups can take advantage of complementary views on neural activity and enhance our understanding about how neural information processing is reflected in each modality.
View Article and Find Full Text PDFThe imaginary part of coherency is a measure to investigate the synchronization of brain sources on the EEG/MEG sensor level, robust to artifacts of volume conduction meaning that independent sources cannot generate a significant result. It does not mean, however, that volume conduction is irrelevant when true interactions are present. Here, we analyze in detail the possibilities to construct measures of true brain interactions which are strictly invariant to linear spatial transformations of the sensor data.
View Article and Find Full Text PDFNeurophysiological measurements obtained from e.g. EEG or fMRI are inherently non-stationary because the properties of the underlying brain processes vary over time.
View Article and Find Full Text PDFIdentifying temporally invariant components in complex multivariate time series is key to understanding the underlying dynamical system and predict its future behavior. In this Letter, we propose a novel technique, stationary subspace analysis (SSA), that decomposes a multivariate time series into its stationary and nonstationary part. The method is based on two assumptions: (a) the observed signals are linear superpositions of stationary and nonstationary sources; and (b) the nonstationarity is measurable in the first two moments.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) based on the so-called blood oxygen level-dependent (BOLD) contrast is a powerful tool for studying brain function not only locally but also on the large scale. Most studies assume a simple relationship between neural and BOLD activity, in spite of the fact that it is important to elucidate how the "when" and "what" components of neural activity are correlated to the "where" of fMRI data. Here we conducted simultaneous recordings of neural and BOLD signal fluctuations in primary visual (V1) cortex of anesthetized monkeys.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2006
We present a technique that identifies truly interacting subsystems of a complex system from multichannel data if the recordings are an unknown linear and instantaneous mixture of the true sources. The method is valid for arbitrary noise structure. For this, a blind source separation technique is proposed that diagonalizes antisymmetrized cross-correlation or cross-spectral matrices.
View Article and Find Full Text PDFPhase synchronization is an important phenomenon that occurs in a wide variety of complex oscillatory processes. Measuring phase synchronization can therefore help to gain fundamental insight into nature. In this Letter we point out that synchronization analysis techniques can detect spurious synchronization, if they are fed with a superposition of signals such as in electroencephalography or magnetoencephalography data.
View Article and Find Full Text PDFWhen applying unsupervised learning techniques in biomedical data analysis, a key question is whether the estimated parameters of the studied system are reliable. In other words, can we assess the quality of the result produced by our learning technique? We propose resampling methods to tackle this question and illustrate their usefulness for blind-source separation (BSS). We demonstrate that our proposed reliability estimation can be used to discover stable one-dimensional or multidimensional independent components, to choose the appropriate BSS-model, to enhance significantly the separation performance, and, most importantly, to flag components that carry physical meaning.
View Article and Find Full Text PDF