Publications by authors named "Frank Mattner"

Introduction: Immunotherapeutic approaches targeting amyloid β (Aβ) protein and tau in Alzheimer's disease and α-synuclein (α-syn) in Parkinson's disease are being developed for treating dementia with Lewy bodies. However, it is unknown if single or combined immunotherapies targeting Aβ and/or α-syn may be effective.

Methods: Amyloid precursor protein/α-syn tg mice were immunized with AFFITOPEs® (AFF) peptides specific to Aβ (AD02) or α-syn (PD-AFF1) and the combination.

View Article and Find Full Text PDF

Background: Multiple system atrophy (MSA) is a neurodegenerative disease characterized by parkinsonism, ataxia and dysautonomia. Histopathologically, the hallmark of MSA is the abnormal accumulation of alpha-synuclein (α-syn) within oligodendroglial cells, leading to neuroinflammation, demyelination and neuronal death. Currently, there is no disease-modifying treatment for MSA.

View Article and Find Full Text PDF

Recent evidence suggests Alzheimer-Disease (AD) to be driven by aggregated Aß. Capitalizing on the mechanism of molecular mimicry and applying several selection layers, we screened peptide libraries for moieties inducing antibodies selectively reacting with Aß-aggregates. The technology identified a pool of peptide candidates; two, AFFITOPES AD01 and AD02, were assessed as vaccination antigens and compared to Aβ1-6, the targeted epitope.

View Article and Find Full Text PDF

Background: Low Density Lipoprotein (LDL) hypercholesterolemia, and its associated cardiovascular diseases, are some of the leading causes of death worldwide. The ability of proprotein convertase subtilisin/kexin 9 (PCSK9) to modulate circulating LDL cholesterol (LDLc) concentrations made it a very attractive target for LDLc management. To date, the most advanced approaches for PCSK9 inhibition are monoclonal antibody (mAb) therapies.

View Article and Find Full Text PDF

Immunotherapeutic approaches are currently in the spotlight for their potential as disease-modifying treatments for neurodegenerative disorders. The discovery that α-synuclein (α-syn) can transmit from cell to cell in a prion-like fashion suggests that immunization might be a viable option for the treatment of synucleinopathies. This possibility has been bolstered by the development of next-generation active vaccination technology with short peptides-AFFITOPEs(®) (AFF)- that do not elicit an α-syn-specific T cell response.

View Article and Find Full Text PDF

The neurodegenerative pathology in patients with Alzheimer's disease (AD) has been associated with the progressive accumulation of aggregated and post-translationally modified amyloid-β (Aβ) species. Among them, recent studies indicate that the pyroglutamate modification of Aβ (pE(3)Aβ) catalyzed by glutaminyl cyclase might play an important role in the pathogenesis of AD. Although the effects of the pyroglutamate modification on Aβ aggregation and toxicity have been investigated, less is known about the distribution of pE(3)Aβ across the spectrum of AD and in the brains of amyloid-β protein precursor (AβPP) transgenic (tg) animals.

View Article and Find Full Text PDF

Neurodegenerative diseases are still an area of unmet medical need. This is in contrast to our increasing knowledge on their pathology (e.g.

View Article and Find Full Text PDF

Cationic antimicrobial peptides (CAMPs) are active defence components of the innate immune system. Several artificial CAMPs have been designed as antibiotic peptide therapeutics, but none have been reported to exert adjuvant activity in animal models. Here we show for the first time that an artificial CAMP, KLKLLLLLKLK (KLKL5KLK), is a potent inducer of adaptive immunity to co-injected antigens in vivo.

View Article and Find Full Text PDF

This study describes an entirely synthetic vaccine composed of antigenic peptides (T cell epitopes), oligodeoxynucleotides containing CpG-motifs (CpG-ODN) and poly-L-arginine (pR). CpG-ODN are known to be potent inducers of predominantly type 1-like immune responses, while polycationic amino acids, like pR, facilitate the uptake of antigens into antigen presenting cells (APCs). We demonstrate that the application of peptides and pR/CpG-ODN results in strongly enhanced peptide-specific immune responses as compared to the application of peptides with either of the immunomodulators alone.

View Article and Find Full Text PDF

Vaccines that induce high numbers of sustained T cell responses are urgently needed for the treatment of numerous diseases including cancer. Antigen-presenting cells (APCs), the most important of which are dendritic cells, orchestrate antigen-dependent T cell responses in that they present antigens to T cells in an appropriate environment. Here we present evidence that after vaccination with a simple mixture of the cationic poly-amino acid poly-L-arginine and tumor antigen-derived peptide antigens, large numbers of antigen-specific T cells are induced and APCs mediate the generation of T lymphocytes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhmror03qsuig8p6lbj0usi5hu2hkc70p): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once