Publications by authors named "Frank Marlow"

A recently developed, new ionic device called the ionic voltage effect soft triode (IVEST) was optimized, tuned and embedded into a memory application concept. The device is an electrochemical micro-cell, consisting of a top electrode and two bottom electrodes. The device controls the concentration and diffusion of ions the voltage applied on the top electrode.

View Article and Find Full Text PDF

We report on the construction and characterization of an ionic soft triode intended to be based on interfacial ion adsorption and redox oxidizer depletion. The soft triode was built in a simple manner with no need for sophisticated or expensive materials. It does not utilize the control of a semiconducting channel, but an electrolyte.

View Article and Find Full Text PDF

Self-assembled opals that are considered as a promising candidate for three-dimensional photonic crystals often suffer from the existence of internal defects. Defects influence optical properties and limit the applicability of opal films. Directed assembly using external fields may offer a certain degree of tunability in the opal formation process.

View Article and Find Full Text PDF

Self-assembled two-dimensional (2D) colloidal crystals (CCs) are utilized in various optical devices, lasers, biosensors, and light harvesting applications. Optical design tuning capabilities, in terms of sphere refractive index and diameter size, can influence the optical characteristics for the close-packed single-layer or multilayer structures. Often transmission dips in 2D CCs are observed, which cannot be explained by Bragg diffraction as it does for 3D photonic crystals.

View Article and Find Full Text PDF

Azobenzene guest molecules in the metal-organic framework structure HKUST-1 show reversible photochemical switching and, in addition, alignment phenomena. Since the host system is isotropic, the orientation of the guest molecules is induced via photo processes by polarized light. The optical properties of the thin films, analyzed by interferometry and UV/vis spectroscopy, reveal the potential of this alignment phenomenon for stable information storage.

View Article and Find Full Text PDF

Self-assembled two-dimensional colloidal crystals (CCs) are critical components in many optical and optoelectronic devices. Such structures usually exhibit various types of disorder, which sometimes can be beneficial for the desired applications. However, disorder poses challenges to the modeling of two-dimensional structures.

View Article and Find Full Text PDF

Electrical transients following laser excitation of dye-sensitized solar cells, thus far described by a complex model in the literature, are not consistent with this model. In particular, there are always delays of the electrical signal after the laser pulse. Although the correct theory has not yet been found, the present article is a step toward an improved understanding.

View Article and Find Full Text PDF

The drying of colloidal crystals is connected with a continuous shrinkage process. However, several minutes after starting the drying, the system seems to take a breath before it shrinks monotonously until its final state after about one day. This short period we call "v"-event because of the shape of the curve characterizing the lattice constant: a decrease followed by a counter-intuitive increase which ends after one hour.

View Article and Find Full Text PDF

Opal shell structures can be fabricated in two ways: By direct assembly from hollow spheres (hs-opal) or by infiltration of precursors into opal templates and inversion. The resulting lattice disturbances were characterized by scanning electron microscopy (SEM), optical microscopy, and transmission spectra. The hs-opal system shows much lower disturbances, for example, a lower number of cracks and lattice deformations.

View Article and Find Full Text PDF

Recently, it was shown that the surface modification of silica particles with -SH functional groups enables their electro-codeposition with zinc. Here, however, we report that no incorporation into Zn can be observed for such modified particles with diameters of <100 nm, while incorporation is possible for particles with diameters of 225 nm and larger. Furthermore, when silica particles are functionalized with mixtures of -SH and -Cl functional groups, which affect the interface energy at the particle/metal interface differently but have similar interfacial energies for the particle/electrolyte interface, it is found that, for successful incorporation of the particles, a minimum amount of -SH functional groups is needed.

View Article and Find Full Text PDF

This paper describes the fabrication of highly monodisperse TiO(2) nanoparticle aggregates (NPAs) by controlled aggregation of nanoparticles in a water-in-oil emulsion. Equally sized drops containing a titanium dioxide nanoparticle suspension are produced in a T-channel device. This procedure has a high tuning potential.

View Article and Find Full Text PDF

Zinc is a well-known sacrificial coating material for iron and co-deposition of suitable particles is of interest for further improving its corrosion protection performance. However, incorporation of particles that are well dispersible in aqueous electrolytes, such as silica particles, is extremely difficult. Here, we report a detailed study of Zn-SiO nanocomposite coatings deposited from a zinc sulfate solution at pH 3.

View Article and Find Full Text PDF

The beauty of opals results from a densely packed, highly ordered arrangement of silica spheres with a diameter of several hundred nanometers. Such ordered nanostructures are typical examples of materials called photonic crystals, which can be formed by known microstructuring methods and by self-assembly. Opals represent a self-assembly approach to these structured media; such an approach can lead to novel materials for photonics, photocatalysis, and other areas.

View Article and Find Full Text PDF

The formation of artificial opal films consists of wet opal deposition, drying, and possible transformations in the dry state. The processes after deposition, before the crystals lattice reaches its final equilibrium state, are studied herein. We follow the time evolution of the optical transmission spectra for polystyrene opals with different thicknesses.

View Article and Find Full Text PDF

We use tapered silica fibers to inject laser light into ZnO nanowires with diameters around 250 nm to study their waveguiding properties. We find that high-order waveguide modes are frequently excited and carry significant intensity at the wire surface. Numerical simulations reproduce the experimental observations and indicate a coupling efficiency between silica and ZnO nanowires of 50%.

View Article and Find Full Text PDF

The anisotropic diffusion in coiled pore systems of SBA-3-type microparticles has been studied by the release of guest molecules. The diffusion turns out as an example of the influence of hierarchical structuring on physical properties. Two modes of diffusion, associated with transport along and across the mesopores, can be identified and measured using optical microscopy.

View Article and Find Full Text PDF

The transport of guest molecules between adjacent pore channels (cross-wall transport) is the limiting factor in the release of guest molecules from SBA-3-like fibers. This specific mode of diffusion is identified by microscopic observation and studied quantitatively in a UV/Vis-monitored release experiment. Analysis of release curves reveals that the external particle surface offers resistance to the guest molecules passing through it (external diffusion barrier).

View Article and Find Full Text PDF

The growth of ZnS nanoparticles by precipitation from supersaturated aqueous solution is studied by stopped-flow UV absorption spectroscopy. The average size, size distribution, and concentration of the particles are monitored within the sub-second time regime with a resolution of 1.28 ms.

View Article and Find Full Text PDF

A capillary deposition method for the preparation of opal and inverse opal films has been developed. By this method, one can control the film thickness and the crack arrangement in opal as well as inverse opal structures. This method combines tube capillarity with cell capillarity or with gravity depending on the stability of the suspensions.

View Article and Find Full Text PDF

The early stages of ZnS nanoparticle growth from supersaturated solution are investigated in situ by stopped-flow UV absorption spectroscopy with a time resolution of 1.28 ms. A model for data analysis is suggested which makes it possible to study both the average particle radius and the concentration.

View Article and Find Full Text PDF

Powder samples can show pronounced texture effects in X-ray scattering. Here, texture effects are described theoretically for circularly ordered fibers and shown experimentally for a special type of these fibers based on nanostructured silica. The systematic diffraction peak intensity dependences, observed with the tilting of the samples, fit well with the theoretical model proposed and can be used as an efficient detection method for circulite-type mesopore organization.

View Article and Find Full Text PDF

The detailed shape of the dense material network of inverse opals has a significant influence on the appearance of band gaps in these photonic crystals. One example of these topologically very similar networks is the skeleton structure, which can show two complete band gaps. Like all inverse opals, these structures are self-standing and can be fabricated via self-assembly strategies.

View Article and Find Full Text PDF