DNA nucleotides can be interrogated by nanomaterials in order to be detected. With the aid of quantum-mechanical simulations, we unravel the intrinsic details of the electronic transport across nanoelectrodes functionalized with tiny modified diamond-like molecules. These electrodes generate a gap in which DNA nucleotides are placed and can be identified.
View Article and Find Full Text PDFBackground: The prehospital identification of stroke patients with large-vessel occlusion (LVO), that should be immediately transported to a thrombectomy capable centre is an unsolved problem. Our aim was to determine whether implementation of a state-wide standard operating procedure (SOP) using the Los Angeles Motor Scale (LAMS) is feasible and enables correct triage of stroke patients to hospitals offering (comprehensive stroke centres, CSCs) or not offering (primary stroke centres, PSCs) thrombectomy.
Methods: Prospective study involving all patients with suspected acute stroke treated in a 4-month period in a state-wide network of all stroke-treating hospitals (eight PSCs and two CSCs).
Invited for the cover of this issue is Oliver Trapp and his co-workers at Ludwig-Maximilians-Universität München, the Max-Planck-Institute for Astronomy and Ruprecht-Karls-Universität Heidelberg. The image depicts a magic trick representing the autocatalytic process reported in the manuscript. Read the full text of the article at 10.
View Article and Find Full Text PDFChemical reactions that lead to a spontaneous symmetry breaking or amplification of the enantiomeric excess are of fundamental interest in explaining the formation of a homochiral world. An outstanding example is Soai's asymmetric autocatalysis, in which small enantiomeric excesses of the added product alcohol are amplified in the reaction of diisopropylzinc and pyrimidine-5-carbaldehydes. The exact mechanism is still in dispute due to complex reaction equilibria and elusive intermediates.
View Article and Find Full Text PDFChemphyschem
September 2020
Functionalized nanogaps embedded in nanopores show a strong potential for enhancing the detection of biomolecules, their length, type, and sequence. This detection is strongly dependent on the features of the target biomolecules, as well as the characteristics of the sensing device. In this work, through quantum-mechanical calculations, we elaborate on representative such aspects for the specific case of DNA detection and read-out.
View Article and Find Full Text PDFElectrodes embedded in nanopores have the potential to detect the identity of biomolecules, such as DNA. This identification is typically being done through electronic current measurements across the electrodes in a solvent. In this work, using quantum-mechanical calculations, we qualitatively present the influence of this solvent on the current signals.
View Article and Find Full Text PDFEur Phys J E Soft Matter
October 2014
It has been shown that diamondoids can interact with DNA by forming relatively strong hydrogen bonds to DNA units, such as nucleobases. For this interaction to occur the diamondoids must be chemically modified in order to provide donor/acceptor groups for the hydrogen bond. We show here that the exact arrangement of an amine-modified adamantane with respect to a neighboring nucleobase has a significant influence on the strength of the hydrogen bond.
View Article and Find Full Text PDFThe possibility of distinguishing between DNA nucleobases of different sizes is manifested here through quantum-mechanical simulations. By using derivatives of small, modified diamond clusters, known as diamondoids, it is possible to separate the pyrimidines (cytosine and thymine) from the larger purines (adenine and guanine), according to the collective electronic and binding properties of these DNA nucleobases and the diamondoid. The latter acts as a probe with which these properties can be examined in detail.
View Article and Find Full Text PDFStereolabile interconverting catalysts open up the possibility of directing enantioselectivity in asymmetric synthesis by formation of diastereomeric complexes with chiral auxiliaries and deracemization. However, the stoichiometrically used auxilliaries can significantly limit the potential applications of such systems. We synthesized a new BIPHEPO tropos ligand containing achiral selectands in the backbone, which forms transient diastereomeric associates with amylose-tris-3,5-dimethylphenyl carbamate as a selector and thus deracemizes.
View Article and Find Full Text PDFWe investigated the stereodynamics of 5,5'-substituted tropos BIPHEP ligands (2,2'-bis(diphenylphosphino)-biphenyls) by enantioselective dynamic high-performance liquid chromatography (DHPLC) to elucidate the influence of the substitution pattern and electronics of the substituents (methyl, methoxy, and hydroxyl groups). By temperature-dependent dynamic HPLC measurements the activation parameters ΔG(╪), ΔH(╪), and ΔS(╪) could be determined with high precision, revealing that the activation barrier of these 5,5'-substituted BIPHEP ligands ranges in a narrow band between 87.8 and 93.
View Article and Find Full Text PDFUpon posttranslational activation, the eukaryotic initiation factor-5A (eIF-5A) transports a subset of mRNAs out of the nucleus to the ribosomes for translation. Activation of the protein is an evolutionary highly conserved process that is unique to eIF-5A, the conversion of a lysine to a hypusine. Instrumental for the synthesis of hypusine is the first of two enzymatic reactions mediated by deoxyhypusine synthase (DHS).
View Article and Find Full Text PDFThe fungal pathogen Fusarium graminearum is the most common agent of Fusarium head blight (FHB) in small grain cereals and cob rot of maize. The threat posed by this fungus is due to a decrease in yield and, additionally, mycotoxin contamination of the harvested cereals. Among the mycotoxins, trichothecenes influence virulence of F.
View Article and Find Full Text PDFSUMMARY Fusarium graminearum is the main causative agent of Fusarium head blight on small grain cereals and of ear rot on maize. The disease leads to dramatic yield losses and to an accumulation of mycotoxins. The most dominant F.
View Article and Find Full Text PDFPyrenophora teres f. sp. teres mating-type genes (MAT-1: 1190 bp; MAT-2: 1055 bp) have been identified.
View Article and Find Full Text PDFFusarium head blight epidemics of wheat and barley cause heavy economic losses to farmers due to yield decreases and production of mycotoxin that renders the grain useless for flour and malt products. No highly resistant cultivars are available at present. Hyphae of germinating fungal spores use different paths of infection: After germination at the extruded tip of an ovary, the hyphae travel along the epicarp in the space between the lemma and palea.
View Article and Find Full Text PDFThe red pigmentation of Fusarium graminearum and related species that cause stem and head blight of cereals is due to the deposition of aurofusarin in the cell walls. To determine the importance of this polyketide for fungal physiology and pathogenicity, aurofusarin deficient mutants were produced by random and targeted mutagenesis of F. pseudograminearum and F.
View Article and Find Full Text PDFWe cloned a polyketide synthase gene (pks12) from Fusarium graminearum, a devastating fungal pathogen of cereals. Transformation-mediated gene disruption led to an easily detectable albino phenotype of the disruptants. We used the disruption of the pks12 gene as a visible marker for transformation-mediated homologous recombination and optimized the transformation procedure to achieve a high rate of homologous recombination.
View Article and Find Full Text PDFTo date, only very little is known about the molecular infection mechanisms of the head-blight pathogen of wheat, Fusarium graminearum (teleomorph Gibberella zeae). Here, we report on the isolation and characterization of the Fus3/Pmk1 mitogen-activated protein kinase homologue Gpmk1 from F. graminearum.
View Article and Find Full Text PDF