Publications by authors named "Frank M Hons"

The meals after oil extraction from many oilseed crops have nutrition and biofumigation potential for land application. Oilseed meal (SM) from the dedicated bioenergy crop were implicated to contain compounds that have antibacterial properties on some soil pathogens. However, little is known about its effect on non-targeted soil microbial community, especially on fungi.

View Article and Find Full Text PDF

The meals from many oilseed crops have potential for biofumigation due to their release of biocidal compounds such as isothiocyanates (ITCs). Various ITCs are known to inhibit numerous pathogens; however, much less is known about how the soil microbial community responds to the different types of ITCs released from oilseed meals (SMs). To simulate applying ITC-releasing SMs to soil, we amended soil with 1% flax SM (contains no biocidal chemicals) along with four types of ITCs (allyl, butyl, phenyl, and benzyl ITC) in order to determine their effects on soil fungal and bacterial communities in a replicated microcosm study.

View Article and Find Full Text PDF

Developing sustainable management practices including appropriate residue removal and nitrogen (N) fertilization for bioenergy sorghum is critical. However, the effects of residue removal and N fertilization associated with bioenergy sorghum production on soil organic carbon (SOC) are less studied compared to other crops. The objective of our research was to assess the impacts of residue removal and N fertilization on biomass yield and SOC under biomass sorghum production.

View Article and Find Full Text PDF

Demand for alternative fuels has sparked renewed interest in the production of biodiesel from oil-rich seeds. Oilseed meals are a byproduct of this process, and given their relatively high nutrient content, land application represents a potential value-added use. In this microcosm-based study, soil microbial community responses to amendments of a glucosinolate-containing brassicaceous oilseed meal (Brassica juncea, mustard), a non-glucosinolate-containing, nonbrassicaceous oilseed meal (Linum usitatissimum, flax), and a nonoilseed biomass (Sorghum bicolor) were characterized using a 28-day time series of replicated 16S rRNA gene and fungal ITS gene sequence libraries.

View Article and Find Full Text PDF

Laboratory experiments were conducted to describe the influence of glyphosate and fluometuron on soil microbial activity and to determine the effect of glyphosate on fluometuron degradation in soil and by Rhizoctonia solani. Soil and liquid medium were amended with formulated fluometuron alone or with two rates of formulated glyphosate. The soil carbon mineralization was measured hourly for 33 days.

View Article and Find Full Text PDF

Compost application to turfgrasses can increase plant-available nutrient concentrations in soil and improve growth, but may alter micronutrient dynamics and increase leaching and runoff losses. The objectives of this study were to investigate the influence of compost on the seasonal dynamics of plant-available Mn, Fe, Cu, and Zn in soil after a single application to bermudagrass [Cynodon dactylon (L.) Pers.

View Article and Find Full Text PDF

Compost application to turfgrass soils may increase dissolved organic C (DOC) levels which affects nutrient dynamics in soil. The objectives of this study were to investigate the influence of compost source and application rate on soil organic C (SOC), DOC, NO(3), and available P during 29 months after a one-time application to St. Augustinegrass [Stenotaphrum secundatum (Walt.

View Article and Find Full Text PDF

Adoption of glyphosate-based weed control systems has led to increased use of the herbicide with continued use of additional pesticides. Combinations of pesticides may affect soil microbial activity differently than pesticides applied alone. Research was conducted to evaluate the influence of glyphosate-based cotton pest management systems on soil microbial activity.

View Article and Find Full Text PDF