Publications by authors named "Frank M Dunnivant"

Article Synopsis
  • Commercially available HS-SPME fibers have been used to extract pesticides and polychlorinated biphenyls from alpine lake water, but analyte recovery related to concentration and storage time hasn't been thoroughly studied.
  • Seven chlorinated pollutants were detected, but recovery rates varied significantly and could lead to underestimating actual contaminant levels in field samples.
  • Of the 54 compounds analyzed, significant concentrations of several chlorinated pesticides were found, indicating a need for standardized recovery evaluation methods for accurate field analyses.
View Article and Find Full Text PDF

Natural organic matter (NOM) has long been shown to be the dominant factor in determining equilibrium and kinetic processes during sorption and desorption phenomena in sediment and soil experiments. Although several models have been suggested for predicting these processes, few offer mechanistic interpretations because the spatial location of organic matter on sediment particles is unknown. This investigation manually examined sediment particles from multiple locations, containing varying concentrations of NOM, using scanning electron microscopy with energy dispersive X-ray spectroscopy to determine the types of particles present by categorizing them as individual particles, aggregates, and "other" (detritus, algae, etc.

View Article and Find Full Text PDF

Coal-related elements are toxic and persistent pollutants that have spread globally since the industrial revolution, mainly from point-source emissions. A sediment core was collected from Deep Lake in northeastern Washington State (USA) by the Washington State Department of Ecology, with the aim of assessing recent changes in atmospheric deposition in the US Pacific Northwest. The core was divided into depth intervals and dated by lead-210.

View Article and Find Full Text PDF

Anthropogenic use of high density, toxic elements results in marine pollution which is bio-accumulating throughout marine food webs. While there have been several studies in various locations analyzing such elements in fish, few have investigated patterns in these elements and their isotopes in terms of ocean depth, and none have studied the greatest depth zones. We used a flame atomic absorption spectrophotometer-hydride system and an inductively coupled plasma-mass spectrometer to determine concentrations of the high-density elements arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), plus the light-metal barium (Ba), in fish ranging from bathyal (1000 m in Monterey Bay) to upper hadal zones (6500-7626 m in the Kermadec and Mariana Trenches) in the Pacific Ocean.

View Article and Find Full Text PDF

The resuspension of large volumes of sediments that are contaminated with chlorinated pollutants continues to threaten environmental quality and human health. Whereas kinetic models are more accurate for estimating the environmental impact of these events, their widespread use is substantially hampered by the need for costly, time-consuming, site-specific kinetics experiments. The present study investigated the development of a predictive model for desorption rates from easily measurable sorbent and pollutant properties by examining the relationship between the fraction of organic carbon (fOC) and labile release rates.

View Article and Find Full Text PDF

A comparison of two techniques (gaseous purge and vial desorption) for studying the kinetics of desorption of hydrophobic pollutants from natural sediments was conducted using identical, pre-equilibrated pollutant-sediment suspensions. Desorption profiles for the two techniques [for Lindane, Aldrin, 2,2'-dichlorobiphenyl (2,2'-DCB), 4,4'-dichlorobiphenyl (4,4'-DCB), and 2,2',6,6'-tetrachlorobiphenyl (TCB)] were then compared, based on the distribution of pollutant mass between the labile (fast) and non-labile (slow) desorption phases and the release rate constants for each phase of release. The vial desorption technique shows many practical advantages over the gaseous purge technique, including its more realistic mixing conditions, the use of an independent sample for each data point (as opposed to a calculation of a cumulative mass purged at each time point), the fact that the vials constitute a closed system and are therefore less subject to ambient contamination, and the relatively low demands of time and money for the vial technique.

View Article and Find Full Text PDF