Self-assembled magnetic nanoparticles offer next-generation materials that allow harnessing of their physicochemical properties for many applications. However, how three-dimensional nanoassemblies of magnetic nanoparticles can be synthesized in one-pot synthesis without excessive postsynthesis processes is still a bottleneck. Here, we propose a panel of small organic molecules that glue nanoparticle crystallites during the growth of particles to form large nanoassembled nanoparticles (NANs).
View Article and Find Full Text PDFPolymerase chain reaction (PCR) requires thermal cycling and enzymatic reactions for sequence amplification, hampering their applications in point-of-care (POC) settings. Magnetic bioassays based on magnetic particle spectroscopy (MPS) and magnetic nanoparticles (MNPs) are isothermal, wash-free, and can be quantitative. Realizing them amplification- and enzyme-free on a benchtop device, they will become irreplaceable for POC applications.
View Article and Find Full Text PDFMagnetic nanoparticles (MNPs) provide new opportunities for enzyme-free biosensing of nucleic acid biomarkers and magnetic actuation by patterning on DNA origami, yet how the DNA grafting density affects their dynamics and accessibility remains poorly understood. Here, we performed surface functionalization of MNPs with single-stranded DNA (ssDNA) click chemistry with a tunable grafting density, which enables the encapsulation of single MNPs inside a functional polymeric layer. We used several complementary methods to show that particle translational and rotational dynamics exhibit a sigmoidal dependence on the ssDNA grafting density.
View Article and Find Full Text PDFImmunoassays exploiting magnetization dynamics of magnetic nanoparticles are highly promising for mix-and-measure, quantitative, and point-of-care diagnostics. However, how single-core magnetic nanoparticles can be employed to reduce particle concentration and concomitantly maximize assay sensitivity is not fully understood. Here, we design monodisperse Néel and Brownian relaxing magnetic nanocubes (MNCs) of different sizes and compositions.
View Article and Find Full Text PDFThe small-angle neutron scattering data of nanostructured magnetic samples contain information regarding their chemical and magnetic properties. Often, the first step to access characteristic magnetic and structural length scales is a model-free investigation. However, due to measurement uncertainties and a restricted range, a direct Fourier transform usually fails and results in ambiguous distributions.
View Article and Find Full Text PDFCritically ill COVID-19 patients are at high risk for venous thromboembolism (VTE), namely deep vein thrombosis (DVT) and/or pulmonary embolism (PE), and death. The optimal anticoagulation strategy in critically ill patients with COVID-19 remains unknown. This study investigated the ante mortem incidence as well as postmortem prevalence of VTE, the factors predictive of VTE, and the impact of changed anticoagulation practice on patient survival.
View Article and Find Full Text PDFEukaryotic genomes contain many nongenic elements that function in gene regulation, chromosome organization, recombination, repair, or replication, and mutation of those elements can affect genome function and cause disease. Although numerous epigenomic studies provide high coverage of gene regulatory regions, those data are not usually exposed in traditional genome annotation and can be difficult to access and interpret without field-specific expertise. The National Center for Biotechnology Information (NCBI) therefore provides RefSeq Functional Elements (RefSeqFEs), which represent experimentally validated human and mouse nongenic elements derived from the literature.
View Article and Find Full Text PDFThe ongoing COVID-19 pandemic stresses the need for widely available diagnostic tests for the presence of SARS-CoV-2 in individuals. Due to the limited availability of vaccines, diagnostic assays which are cheap, easy-to-use at the point-of-need, reliable and fast, are currently the only way to control the pandemic situation. Here we present a diagnostic assay for the detection of pathogen-specific nucleic acids based on changes of the magnetic response of magnetic nanoparticles: The target-mediated hybridization of modified nanoparticles leads to an increase in the hydrodynamic radius.
View Article and Find Full Text PDFThe outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global medical systems and economies and rules our daily living life. Controlling the outbreak of SARS-CoV-2 has become one of the most important and urgent strategies throughout the whole world. As of October 2020, there have not yet been any medicines or therapies to be effective against SARS-CoV-2.
View Article and Find Full Text PDFWe present theoretical calculations of the characteristics of the static magnetic response of multicore magnetic nanoparticles. These particles contain a considerable number (∼10^{2}) of single-domain magnetic nanocrystallites, which are modeled as uniformly magnetized balls with uniaxial magnetocrystalline anisotropy, the energetic barrier of which is comparable with the thermal energy. Thus, we model a multicore magnetic nanoparticle as an ensemble of superparamagnetic nanoparticles, the position and the easy magnetization axis of which are fixed but randomly distributed.
View Article and Find Full Text PDFIn several upcoming rheological approaches, including methods of micro- and nanorheology, the measurement geometry is of critical impact on the interpretation of the results. The relative size of the probe objects employed (as compared to the intrinsic length scales of the sample to be investigated) becomes of crucial importance, and there is increasing interest to investigate the dynamic processes and mobility in nanostructured materials. A combination of different rheological approaches based on the rotation of magnetically blocked nanoprobes is used to systematically investigate the size-dependent diffusion behavior in aqueous poly(ethylene glycol) (PEG) solutions with special attention paid to the relation of probe size to characteristic length scales within the polymer solutions.
View Article and Find Full Text PDFThis study reports on a wash-free, inexpensive and sensitive approach of biomolecule imaging with magnetic nanoparticles (MNPs) via a custom-built scanning magnetic particle spectrometer (SMPS). Streptavidin-coated MNPs are used as magnetic biomarkers for the detection of Immunoglobulin G (IgG) conjugated with biotin (IgG-Biotin) while five samples with different-concentration IgG-Biotin are prepared for experiments. The measurements of the ac susceptibility indicate that the conjugation of the IgG-Biotin onto the surface of the MNPs forms cross-linking between the MNPs, thus increasing the characteristic Brownian relaxation time from 0.
View Article and Find Full Text PDFMagnetic hyperthermia is a technique that describes the heating of material through an external magnetic field. Classic hyperthermia is a medical condition where the human body overheats, being usually triggered by a heat stroke, which can lead to severe damage to organs and tissue due to the denaturation of cells. In modern medicine, hyperthermia can be deliberately induced to specified parts of the body to destroy malignant cells.
View Article and Find Full Text PDFMagnetic nanoparticles are critical to a broad range of applications from medical diagnostics and therapeutics to biotechnological processes and single-molecule manipulation. To advance these applications, facile and robust routes to synthesize highly magnetic nanoparticles over a wide size range are needed. Here, we demonstrate that changing the degassing temperature of thermal decomposition of metal acetylacetonate precursors from 90 to 25 °C tunes the size of ferrimagnetic ZnFeO nanocubes from 25 to 100 nm, respectively.
View Article and Find Full Text PDFBackground: Magnetic drug targeting (MDT) is an effective alternative for common drug applications, which reduces the systemic drug load and maximizes the effect of, eg, chemotherapeutics at the site of interest. After the conjugation of a magnetic carrier to a chemotherapeutic agent, the intra-arterial injection into a tumor-afferent artery in the presence of an external magnetic field ensures the accumulation of the drug within the tumor tissue.
Materials And Methods: In this study, we used superparamagnetic iron oxide nanoparticles (SPIONs) coated with lauric acid and human serum albumin as carriers for paclitaxel (SPION).
ACS Appl Mater Interfaces
January 2019
By studying the response behavior of ferrofluids of 6-22 nm maghemite nanoparticles in glycerol solution exposed to external magnetic fields, we demonstrate the ability of Mössbauer spectroscopy to access a variety of particle dynamics and static magnetic particle characteristics at the same time, offering an extensive characterization of ferrofluids for in-field applications; field-dependent particle alignment and particle mobility in terms of Brownian motion have been extracted simultaneously from a series of Mössbauer spectra for single-core particles as well as for particle agglomerates. Additionally, information on Néel superspin relaxation and surface spin frustration could be directly inferred from this analysis. Parameters regarding Brownian particle dynamics, as well as Néel-type relaxation behavior, obtained via Mössbauer spectroscopy, have been verified by complementary AC-susceptometry experiments, modulating the AC-field amplitude, and using an extended frequency range of 10 to 10 Hz, while field-dependent particle alignment has been cross-checked via magnetometry.
View Article and Find Full Text PDFThis paper quantitatively investigates the spatial and temperature resolutions of magnetic nanoparticle (MNP) temperature imaging with a multiline phantom filled with MNPs. The multiline phantom in total consists of seven lines with different distances between two adjacent lines. A scanning magnetic particle spectrometer is used to measure the spatial distributions of the MNP harmonics for MNP concentration and temperature imaging, whereas an iterative deconvolution method is used to improve the spatial resolution.
View Article and Find Full Text PDFHerein, by studying a stepwise phase transformation of 23 nm FeO-FeO core-shell nanocubes into FeO, we identify a composition at which the magnetic heating performance of the nanocubes is not affected by the medium viscosity and aggregation. Structural and magnetic characterizations reveal the transformation of the FeO-FeO nanocubes from having stoichiometric phase compositions into Fe-deficient FeO phases. The resultant nanocubes contain tiny compressed and randomly distributed FeO subdomains as well as structural defects.
View Article and Find Full Text PDFThe response of magnetic nanoparticles (MNPs) to an oscillating magnetic field outside the linear response region is important for several applications including magnetic hyperthermia, magnetic resonance imaging and biodetection. The size and magnetic moment are two critical parameters for the performance of a colloidal MNP dispersion. We present and demonstrate the use of optomagnetic (OM) and AC susceptibility (ACS) measurements vs.
View Article and Find Full Text PDFDetecting biomarkers from complex sample solutions is the key objective of molecular diagnostics. Being able to do so in a simple approach that does not require laborious sample preparation, sophisticated equipment and trained staff is vital for point-of-care applications. Here, we report on the specific detection of the breast cancer biomarker sHER2 directly from serum and saliva samples by a nanorod-based homogeneous biosensing approach, which is easy to operate as it only requires mixing of the samples with the nanorod probes.
View Article and Find Full Text PDFThe growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2016
Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins.
View Article and Find Full Text PDFThis study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical) susceptometry and magnetorelaxometry and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles.
View Article and Find Full Text PDFMagnetic nanoparticle systems can be divided into single-core nanoparticles (with only one magnetic core per particle) and magnetic multi-core nanoparticles (with several magnetic cores per particle). Here, we report multi-core nanoparticle synthesis based on a controlled precipitation process within a well-defined oil in water emulsion to trap the superparamagnetic iron oxide nanoparticles (SPION) in a range of polymer matrices of choice, such as poly(styrene), poly(lactid acid), poly(methyl methacrylate), and poly(caprolactone). Multi-core particles were obtained within the Z-average size range of 130 to 340 nm.
View Article and Find Full Text PDFSensitivity and spatial resolution in Magnetic Particle Imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer's magnetic core size, hydrodynamic size, and magnetic anisotropy.
View Article and Find Full Text PDF