Publications by authors named "Frank Kulwa"

Intelligent rehabilitation robotics (RR) have been proposed in recent years to aid post-stroke survivors recover their lost limb functions. However, a large proportion of these robotic systems operate in a passive mode that restricts users to predefined trajectories that rarely align with their intended limb movements, precluding full functional recovery. To address this issue, an efficient Transfer Learning based Convolutional Neural Network (TL-CNN) model is proposed to decode post-stroke patients' motion intentions toward realizing dexterously active robotic training during rehabilitation.

View Article and Find Full Text PDF

Introduction: Electromyogram-based pattern recognition (EMG-PR) has been widely considered an essentially intuitive control method for multifunctional upper limb prostheses. A crucial aspect of the scheme is the EMG signal recording duration (SRD) from which requisite motor tasks are characterized per time, impacting the system's overall performance. For instance, lengthy SRD inevitably introduces fatigue (that alters the muscle contraction patterns of specific limb motions) and may incur high computational costs in building the motion intent decoder, resulting in inadequate prosthetic control and controller delay in practical usage.

View Article and Find Full Text PDF

Surface electromyogram (sEMG) is arguably the most sought-after physiological signal with a broad spectrum of biomedical applications, especially in miniaturized rehabilitation robots such as multifunctional prostheses. The widespread use of sEMG to drive pattern recognition (PR)-based control schemes is primarily due to its rich motor information content and non-invasiveness. Moreover, sEMG recordings exhibit non-linear and non-uniformity properties with inevitable interferences that distort intrinsic characteristics of the signal, precluding existing signal processing methods from yielding requisite motor control information.

View Article and Find Full Text PDF

Environmental microorganism (EM) offers a highly efficient, harmless, and low-cost solution to environmental pollution. They are used in sanitation, monitoring, and decomposition of environmental pollutants. However, this depends on the proper identification of suitable microorganisms.

View Article and Find Full Text PDF

Early breast cancer detection is one of the most important issues that need to be addressed worldwide as it can help increase the survival rate of patients. Mammograms have been used to detect breast cancer in the early stages; if detected in the early stages, it can drastically reduce treatment costs. The detection of tumours in the breast depends on segmentation techniques.

View Article and Find Full Text PDF
Article Synopsis
  • Cervical cancer is a major health concern for women, but regular screening, especially through Pap smear tests, can help detect precancerous lesions early.
  • Traditional Pap smear screenings can lead to high false-positive rates due to human error, prompting the exploration of machine learning (ML) and deep learning (DL) methods for more accurate detection.
  • The study introduces DeepCervix, a hybrid deep feature fusion technique, achieving impressive classification accuracy on cervical cell datasets, including 99.85% for 2-class classification on the SIPaKMeD dataset.
View Article and Find Full Text PDF

Environmental Microorganism Data Set Fifth Version (EMDS-5) is a microscopic image dataset including original Environmental Microorganism (EM) images and two sets of Ground Truth (GT) images. The GT image sets include a single-object GT image set and a multi-object GT image set. EMDS-5 has 21 types of EMs, each of which contains 20 original EM images, 20 single-object GT images and 20 multi-object GT images.

View Article and Find Full Text PDF

Background: The novel coronavirus disease 2019 (COVID-19) constitutes a public health emergency globally. The number of infected people and deaths are proliferating every day, which is putting tremendous pressure on our social and healthcare system. Rapid detection of COVID-19 cases is a significant step to fight against this virus as well as release pressure off the healthcare system.

View Article and Find Full Text PDF

To assist researchers to identify Environmental Microorganisms (EMs) effectively, a (MSCC) framework for the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level segmentation approach, using a newly introduced (CNN), namely, "mU-Net-B3", with a dense (CRF) postprocessing. The second is a VGG-16 based patch-level segmentation method with a novel "buffer" strategy, which further improves the segmentation quality of the details of the EMs.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: