Publications by authors named "Frank Katzenberg"

Article Synopsis
  • Smart materials change properties like size and color in response to external triggers, but the next generation will also react to the dynamics of these triggers.
  • The study explores a new heating rate-sensitive material, cross-linked and fully amorphous x-PET, which can shrink to different lengths based on how fast it is heated.
  • This sensitivity occurs because x-PET begins to retract at higher temperatures and simultaneously stops due to crystallization, leading to its unique response to heating rates.
View Article and Find Full Text PDF

In this work, high-temperature shape memory polymers are realized by end-group crosslinking of the semiaromatic polyesters polyethylene terephthalate as well as polybutylene terephthalate. Both networks exhibit trigger temperatures distinctly higher than 200 °C and excellent shape memory properties such as storable strains of 200%, full fixity of the applied strain in the temporary shape, and full recovery of the permanent shape.

View Article and Find Full Text PDF

Here we report on a novel type of smart material that is capable of specifically responding to the changing rate of an environmental signal. This is shown on the example of lightly cross-linked syndiotactic polypropylene that reacts to a temperature increase by adapting its shape change according to the applied heating rate. In general, a material with such properties can be used to predict a system failure when used in a defined environment and is therefore called "predictive material".

View Article and Find Full Text PDF

In this study, a material is designed which combines the properties of shape-memory and electroactive polymers. This is achieved by covalent cross-linking of polyvinylidene fluoride. The resulting polymer network exhibits excellent shape-memory properties with a storable strain of 200%, and fixity as well as recovery values of 100%.

View Article and Find Full Text PDF

In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle.

View Article and Find Full Text PDF

Typical shape memory polymers are hot-programmed and show a shape transition over a broad temperature range of 10 K and more. Cold-programmed shape memory natural rubber (SMNR) recovers more than 80% of its original shape within 1 K. The trigger point can be increased upon aging the stretched SMNR over several weeks without losing the narrow trigger range.

View Article and Find Full Text PDF

Generally reversible stimuli-responsive materials do not memorize the stimulus. In this study we describe an example in which stretched and constrained semi-crystalline polymer networks respond to solvent gases with stress and simultaneously memorize the concentration and the chemical nature of the solvent itself in their microstructure. This written solvent signature can even be deleted by temperature.

View Article and Find Full Text PDF
Article Synopsis
  • Constrained shape memory natural rubber (SMNR) creates mechanical stress when exposed to solvent vapor.
  • Upon removal of the solvent vapor, the material resets itself, showing a reversible process.
  • The amount of stress generated is directly related to the concentration of the solvent vapor and varies depending on the specific solvent used.
View Article and Find Full Text PDF

In contrast to all known shape memory polymers, the melting temperature of crystals in shape memory natural rubber (SMNR) can be greatly manipulated by the application of external mechanical stress. As shown previously, stress perpendicular to the prior programming direction decreases the melting temperature by up to 40 K. In this study, we investigated the influence of mechanical stress parallel to prior stretching direction during programming on the stability of the elongation-stabilizing crystals.

View Article and Find Full Text PDF

Lightly cross-linked natural rubber (NR, cis-1,4-polyisoprene) was found to be an exceptional cold programmable shape memory polymer (SMP) with strain storage of up to 1000%. These networks are stabilized by strain-induced crystals. Here, we explore the influence of mechanical stress applied perpendicular to the elongation direction of the network on the stability of these crystals.

View Article and Find Full Text PDF