Publications by authors named "Frank J Lowery"

Background: The use of tumor-infiltrating T lymphocytes (TIL) that recognize cancer neoantigens has led to lasting remissions in metastatic melanoma and certain cases of metastatic epithelial cancer. For the treatment of the latter, selecting cells for therapy typically involves laborious screening of TIL for recognition of autologous tumor-specific mutations, detected through next-generation sequencing of freshly resected metastatic tumors. Our study explored the feasibility of using archived formalin-fixed, paraffin-embedded (FFPE) primary tumor samples for cancer neoantigen discovery, to potentially expedite this process and reduce the need for resections normally required for tumor sequencing.

View Article and Find Full Text PDF
Article Synopsis
  • Brain metastases (BrMs) evade the immune system by overexpressing Cdk5, which helps them grow in the brain while reducing MHC-I expression and function, important for T cell recognition.
  • * By inhibiting Cdk5, researchers can restore MHC-I levels and improve immune response against these tumors, as shown through various studies including RNA sequencing.
  • * Treatment with the Cdk5 inhibitor roscovitine, especially when combined with immune checkpoint inhibitors, reduces BrM growth and enhances the presence of functional CD8 T cells in mice.
View Article and Find Full Text PDF

Adoptive cell transfer (ACT) with neoantigen-reactive T lymphocytes can mediate cancer regression. Here we isolated unique, personalized, neoantigen-reactive T cell receptors (TCRs) from tumor-infiltrating lymphocytes of patients with metastatic gastrointestinal cancers and incorporated the TCR α and β chains into gamma retroviral vectors. We transduced autologous peripheral blood lymphocytes and adoptively transferred these cells into patients after lymphodepleting chemotherapy.

View Article and Find Full Text PDF

Background: Tumor-infiltrating lymphocytes (TILs) targeting neoantigens can effectively treat a selected set of metastatic solid cancers. However, harnessing TILs for cancer treatments remains challenging because neoantigen-reactive T cells are often rare and exhausted, and ex vivo expansion can further reduce their frequencies. This complicates the identification of neoantigen-reactive T-cell receptors (TCRs) and the development of TIL products with high reactivity for patient treatment.

View Article and Find Full Text PDF

Circulating T cells from peripheral blood (PBL) can provide a rich and noninvasive source for antitumor T cells. By single-cell transcriptomic profiling of 36 neoantigen-specific T cell clones from 6 metastatic cancer patients, we report the transcriptional and cell surface signatures of antitumor PBL-derived CD8 T cells (NeoTCR). Comparison of tumor-infiltrating lymphocyte (TIL)- and PBL-neoantigen-specific T cells revealed that NeoTCR T cells are low in frequency and display less-dysfunctional memory phenotypes relative to their TIL counterparts.

View Article and Find Full Text PDF

Background: Cellular immunotherapies using autologous tumor-infiltrating lymphocytes (TIL) can induce durable regression of epithelial cancers in selected patients with treatment-refractory metastatic disease. As the genetic engineering of T cells with tumor-reactive T-cell receptors (TCRs) comes to the forefront of clinical investigation, the rapid, scalable, and cost-effective detection of patient-specific neoantigen-reactive TIL remains a top priority.

Methods: We analyzed the single-cell transcriptomic states of 31 neoantigen-specific T-cell clonotypes to identify cell surface dysfunction markers that best identified the metastatic transcriptional states enriched with antitumor TIL.

View Article and Find Full Text PDF

Background: Adoptive transfer of tumor-infiltrating lymphocytes (TIL) fails to consistently elicit tumor rejection. Manipulation of intrinsic factors that inhibit T cell effector function and neoantigen recognition may therefore improve TIL therapy outcomes. We previously identified the cytokine-induced SH2 protein (CISH) as a key regulator of T cell functional avidity in mice.

View Article and Find Full Text PDF

Adoptive cellular therapy (ACT) targeting neoantigens can achieve durable clinical responses in patients with cancer. Most neoantigens arise from patient-specific mutations, requiring highly individualized treatments. To broaden the applicability of ACT targeting neoantigens, we focused on TP53 mutations commonly shared across different cancer types.

View Article and Find Full Text PDF

A common theme across multiple successful immunotherapies for cancer is the recognition of tumor-specific mutations (neoantigens) by T cells. The rapid discovery of such antigen responses could lead to improved therapies through the adoptive transfer of T cells engineered to express neoantigen-reactive T cell receptors (TCRs). Here, through CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) and TCR-seq of non-small cell lung cancer (NSCLC) tumor-infiltrating lymphocytes (TILs), we develop a neoantigen-reactive T cell signature based on clonotype frequency and CD39 protein and CXCL13 mRNA expression.

View Article and Find Full Text PDF

The accurate identification of antitumor T cell receptors (TCRs) represents a major challenge for the engineering of cell-based cancer immunotherapies. By mapping 55 neoantigen-specific TCR clonotypes (NeoTCRs) from 10 metastatic human tumors to their single-cell transcriptomes, we identified signatures of CD8 and CD4 neoantigen-reactive tumor-infiltrating lymphocytes (TILs). Neoantigen-specific TILs exhibited tumor-specific expansion with dysfunctional phenotypes, distinct from blood-emigrant bystanders and regulatory TILs.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on the critical role of T cells recognizing neoantigens in cancer immunotherapy, emphasizing the need to identify specific T-cell receptors (TCRs) for studying and enhancing T cell responses.
  • - A new method using high-throughput single-cell sequencing was developed to efficiently isolate neoantigen-specific TCRs from tumor-infiltrating T cells, involving stimulation with neoantigen-loaded dendritic cells.
  • - The results revealed 28 neoantigen-specific TCRs from melanoma and colorectal tumors, demonstrating high reliability in identifying identical TCR sequences, pointing to a promising technique for both research and clinical applications.
View Article and Find Full Text PDF

Purpose: Immunotherapies mediate the regression of human tumors through recognition of tumor antigens by immune cells that trigger an immune response. Mutations in the oncogenes occur in about 30% of all patients with cancer. These mutations play an important role in both tumor establishment and survival and are commonly found in hotspots.

View Article and Find Full Text PDF

Adoptive T cell therapy (ACT) using ex vivo-expanded autologous tumor-infiltrating lymphocytes (TILs) can mediate complete regression of certain human cancers. The impact of TIL phenotypes on clinical success of TIL-ACT is currently unclear. Using high-dimensional analysis of human ACT products, we identified a memory-progenitor CD39-negative stem-like phenotype (CD39CD69) associated with complete cancer regression and TIL persistence and a terminally differentiated CD39-positive state (CD39CD69) associated with poor TIL persistence.

View Article and Find Full Text PDF

Engineered T cells expressing tumor-specific T-cell receptors (TCRs) are emerging as a mode of personalized cancer immunotherapy that requires identification of TCRs against the products of known driver mutations and novel mutations in a timely fashion. We present a nonviral and non-next-generation sequencing platform for rapid, and efficient neoantigen-specific TCR identification and evaluation that does not require the use of recombinant cloning techniques. The platform includes an innovative method of TCRα detection using Sanger sequencing, TCR pairings and the use of TCRα/β gene fragments for putative TCR evaluation.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the development of a personalized therapeutic vaccine targeting neoantigens found in patients with metastatic gastrointestinal cancer, as traditional cancer vaccines have shown limited success.
  • The vaccine was created using tumor-infiltrating lymphocytes to identify specific mutations, successfully eliciting T cell responses against predicted neoepitopes, although it did not lead to measurable clinical responses in the small patient group.
  • Despite the lack of objective responses, the research suggests further investigation into combining this vaccine approach with other therapies like checkpoint inhibitors may improve outcomes for patients with common epithelial cancers.
View Article and Find Full Text PDF

Purpose: The purpose of this study was to evaluate antigen experienced T cells in peripheral blood lymphocytes (PBL) for responses to p53 neoantigens.

Experimental Design: PBLs from patients with a mutated tumor were sorted for antigen-experienced T cells and stimulation (IVS) was performed with p53 neoantigens. The IVS cultures were stimulated with antigen-presenting cells expressing p53 neoantigens, enriched for 41BB/OX40 and grown with rapid expansion protocol.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. To identify TNBC therapeutic targets, we performed integrative bioinformatics analysis of multiple breast cancer patient-derived gene expression datasets and focused on kinases with FDA-approved or in-pipeline inhibitors. Sphingosine kinase 1 (SPHK1) was identified as a top candidate.

View Article and Find Full Text PDF

Immunotherapies can mediate regression of human tumors with high mutation rates, but responses are rarely observed in patients with common epithelial cancers. This raises the question of whether patients with these common cancers harbor T lymphocytes that recognize mutant proteins expressed by autologous tumors that may represent ideal targets for immunotherapy. Using high-throughput immunologic screening of mutant gene products identified via whole-exome sequencing, we identified neoantigen-reactive tumor-infiltrating lymphocytes (TIL) from 62 of 75 (83%) patients with common gastrointestinal cancers.

View Article and Find Full Text PDF

Metastasis, the spread and growth of malignant cells at secondary sites within a patient's body, accounts for > 90% of cancer-related mortality. Recently, impressive advances in novel therapies have dramatically prolonged survival and improved quality of life for many cancer patients. Sadly, incidence of brain metastatic recurrences is fast rising, and all current therapies are merely palliative.

View Article and Find Full Text PDF

The metastasis of cancer to the central nervous system (CNS) remains a devastating clinical reality, carrying an estimated survival time of less than one year in spite of recent therapeutic breakthroughs for other disease contexts. Advances in brain metastasis research are hindered by a number of factors, including its complicated nature and the difficulty of modeling metastatic cancer growth in the unique brain microenvironment. In this review, we will discuss the clinical challenge, and compare the merits and limitations of the available models for brain metastasis research.

View Article and Find Full Text PDF

The development of life-threatening cancer metastases at distant organs requires disseminated tumour cells' adaptation to, and co-evolution with, the drastically different microenvironments of metastatic sites. Cancer cells of common origin manifest distinct gene expression patterns after metastasizing to different organs. Clearly, the dynamic interaction between metastatic tumour cells and extrinsic signals at individual metastatic organ sites critically effects the subsequent metastatic outgrowth.

View Article and Find Full Text PDF

Transforming growth factor β (TGF-β) functions as a tumor suppressor in premalignant cells but as a metastasis promoter in cancer cells. The dichotomous functions of TGF-β are proposed to be dictated by different partners of its downstream effector Smads. However, the mechanism for the contextual changes of Smad partners remained undefined.

View Article and Find Full Text PDF
Article Synopsis
  • Research shows that the type I insulin-like growth factor receptor (IGF-IR) is linked to breast cancer progression and is actively involved in brain metastasis.
  • Knockdown of IGF-IR in brain-seeking breast cancer cells leads to reduced cell movement and invasion, indicating its role in cancer spread.
  • The study also found that inhibiting IGF-IR can decrease the likelihood of brain metastases, suggesting that targeting this receptor could be a potential therapeutic strategy for preventing brain cancer spread.
View Article and Find Full Text PDF

Despite better control of early-stage disease and improved overall survival of patients with breast cancer, the incidence of life-threatening brain metastases continues to increase in some of these patients. Unfortunately, other than palliative treatments there is no effective therapy for this condition. In this study, we reveal a critical role for Src activation in promoting brain metastasis in a preclinical model of breast cancer and we show how Src-targeting combinatorial regimens can treat HER2(+) brain metastases in this model.

View Article and Find Full Text PDF

Paget's "seed and soil" hypothesis stated that cancer metastasis requires permissive interactions between tumor cells and secondary organ microenvironments. Many of these "permissive interactions" are now known to be growth factor receptor and ligand interactions by which metastatic tumor cells coopt signaling pathways normally used by host organs. However, although cancer cell signaling pathways responsible for primary cancer growth have been extensively characterized, signaling pathways important in supporting tumor cell-secondary organ heterotypic interactions have been neglected.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Frank J Lowery"

  • - Frank J Lowery's recent research focuses on the mechanisms of immune evasion in breast cancer brain metastases, specifically how astrocytes can induce cyclin-dependent kinase 5 (Cdk5) overexpression that suppresses major histocompatibility complex (MHC-I) expression, contributing to metastatic outgrowth.
  • - His work in adoptive cell therapy highlights the potential of personalized neoantigen-reactive T cell receptors (TCRs) in treating metastatic colorectal cancer and the effective isolation and expansion of tumor-infiltrating lymphocytes (TILs) through targeted neoantigen stimulation.
  • - Lowery's studies also emphasize the identification and characterization of neoantigen-specific TCRs from various tumor types, revealing new insights into T cell reactivity and function, which may enhance the efficacy of cancer immunotherapies.