Publications by authors named "Frank Herzberg"

Over the recent years, EU chemicals legislation, guidance and test guidelines have been developed or adapted for nanomaterials to facilitate safe use of nanomaterials. This paper provides an overview of the information requirements across different EU regulatory areas. For each information requirement, a group of 22 experts identified potential needs for further action to accommodate guidance and test guidelines to nanomaterials.

View Article and Find Full Text PDF

Genotoxicity is associated with serious health effects and includes different types of DNA lesions, gene mutations, structural chromosome aberrations involving breakage and/or rearrangements of chromosomes (referred to as clastogenicity) and numerical chromosome aberrations (referred to as aneuploidy). Assessing the potential genotoxic properties of chemicals, including nanomaterials (NMs), is a key element in regulatory safety assessment. State-of-the-art genotoxicity testing includes a battery of assays covering gene mutations, structural and numerical chromosome aberrations.

View Article and Find Full Text PDF

In light of the broad spectrum of products containing nanosilver, the harmfulness of nanosilver to human health and the environment was intensively discussed at a conference held in February 2012 at the BfR. The conference agenda covered the aspects of analytics of nanosilver materials, human exposure and toxicology as well as effects on microorganisms and the environment. The discussion recovered major gaps related to commonly agreed guidelines for sample preparation and central analytical techniques.

View Article and Find Full Text PDF

A summary of a critical review by a working group of the German Federal Environment Agency and the German Federal Institute for Risk Assessment on the carcinogenic potential of nanomaterials is presented. After a critical review of the available data, we conclude that the potential carcinogenic risk of nanomaterials can currently be assessed only on a case-by-case basis. There is certain evidence that different forms of CNTs (carbon nanotubes) and nanoscale TiO(2) particles may induce tumours in sensitive animal models.

View Article and Find Full Text PDF