We present a novel approach to achieve spatial variations in the degree of non-covalent functionalization of twisted bilayer graphene (tBLG). The tBLG with twist angles varying between ~5° and 7° was non-covalently functionalized with 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HATCN) molecules. Our results show a correlation between the degree of functionalization and the twist angle of tBLG.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
The emerging laser writing represents an efficient and promising strategy for covalent two dimensional (2D)-patterning of graphene yet remains a challenging task due to the lack of applicable reagents. Here, we report a versatile approach for covalent laser patterning of graphene using a family of trivalent organic iodine compounds as effective reagents, allowing for the engraving of a library of functionalities onto the graphene surface. The relatively weak iodine-centered bonds within these compounds can readily undergo laser-induced cleavage to in situ generate radicals localized to the irradiated regions for graphene binding, thus completing the covalent 2D-structuring of this 2D-film.
View Article and Find Full Text PDFFluorination of two-dimensional (2D) antimonene hexagons synthesized through a colloidal bottom-up approach has been explored using microwave-induced plasma and reactive ion etching fluorination strategies through the generation of CF. The stability of the fluorine bond has been corroborated through DFT calculations. This work paves the way for further halogen-derivative modifications of heavy 2D pnictogens.
View Article and Find Full Text PDFThe non-covalent functionalization of black phosphorus (BP) was studied with a scope of ten tailor-made perylene diimides (PDIs). A combination of UV/Vis-, fluorescence-, as well as Raman spectroscopy and atomic force microscopy was used to investigate the structural factors, which contribute to a pronounced PDI-BP interaction and thus support the protection of BP nanosheets against oxidative degradation. We were able to show, that water-soluble, amphiphilic PDIs with highly charged head groups can be used for the non-covalent functionalization of BP in aqueous media.
View Article and Find Full Text PDFTwo classes of photoactive compounds containing fluoroalkyl- and alkyl silver carboxylates were utilized for graphene laser writing, affording a set of patterned graphene architectures bearing various functionalities. The laser patterning of graphene is accomplished by using laser-triggered decomposition of silver carboxylates to generate radicals confined to the irradiated area for the selective binding of graphene.
View Article and Find Full Text PDFThree-dimensionally (3D) well-ordered and highly integrated graphene hybrid architectures are considered to be next-generation multifunctional graphene materials but still remain elusive. Here, we report the first realization of unprecedented 3D-patterned graphene nano-ensembles composed of a graphene monolayer, a tailor-made structured organophenyl layer, and three metal oxide films, providing the first example of such a hybrid nano-architecture. These spatially resolved and hierarchically structured quinary hybrids are generated via a two-dimensional (2D)-functionalization-mediated atomic layer deposition growth process, involving an initial lateral molecular programming of the graphene lattice via lithography-assisted 2D functionalization and a subsequent stepwise molecular assembly in these regions in the z-direction.
View Article and Find Full Text PDFCovalently patterned Janus-functionalized graphene featuring a spatially defined asymmetric bifacial addend binding motif remains a challenging synthetic target. Here, a facile and universal laser writing approach for a one-step covalent Janus patterning of graphene is reported, leading to the formation of up to now elusive graphene architectures, solely consisting of antaratopically functionalized superlattices. The structurally defined covalent functionalization procedure is based on laser-triggered concurrent photolysis of two different photosensitizers situated on both sides of the graphene plane, generating radicals and subsequent addend binding in the laser-irradiated areas only.
View Article and Find Full Text PDFThe sequential vertical polyfunctionalization of 2D addend-patterned graphene is still elusive. Here, we report a practical realization of this goal via a "molecular building blocks" approach, which is based on a combination of a lithography-assisted reductive functionalization approach and a post-functionalization step to sequentially and controllably link the molecular building blocks ethylpyridine, cis-dichlorobis(2,2'-bipyridyl)ruthenium, and triphenylphosphine (4-methylbenzenethiol, respectively) on selected lattice regions of a graphene matrix. The assembled 2D hetero-architectures are unambiguously characterized by various spectroscopic and microscopic measurements, revealing the stepwise stacking of the molecular building blocks on the graphene surface.
View Article and Find Full Text PDFHerein we report the synthesis of covalently functionalized carbon nano-onions (CNOs) via a reductive approach using unprecedented alkali-metal CNO intercalation compounds. For the first time, an Raman study of the controlled intercalation process with potassium has been carried out revealing a Fano resonance in highly doped CNOs. The intercalation was further confirmed by electron energy loss spectroscopy and X-ray diffraction.
View Article and Find Full Text PDFThe realization that nanostructured graphene featuring nanoscale width can confine electrons to open its bandgap has aroused scientists' attention to the regulation of graphene structures, where the concept of graphene patterns emerged. Exploring various effective methods for creating graphene patterns has led to the birth of a new field termed graphene patterning, which has evolved into the most vigorous and intriguing branch of graphene research during the past decade. The efforts in this field have resulted in the development of numerous strategies to structure graphene, affording a variety of graphene patterns with tailored shapes and sizes.
View Article and Find Full Text PDFThree novel types of spatially resolved graphene architectures GA, GB, and GC respectively bearing CH3-, C6H5- and C3F7 groups are efficiently constructed by newly developed laser-writing concepts using silver carboxylates as corresponding photosensitizers. These 2D-structured samples are unequivocally characterized by Raman spectroscopy and SEM-EDS.
View Article and Find Full Text PDFStructured covalent two-dimensional patterning of graphene with different chemical functionalities constitutes a major challenge in nanotechnology. At the same time, it opens enormous opportunities towards tailoring of physical and chemical properties with limitless combinations of spatially defined surface functionalities. However, such highly integrated carbon-based architectures (graphene embroidery) are so far elusive.
View Article and Find Full Text PDFLaser writing as a simple and straightforward method for covalent 2D patterning of graphene remains challenging. Here, we report a facile and efficient approach for a laser-induced 2D patterning of graphene utilizing silver trifluoroacetate, providing an unprecedented high degree of functionalization. The use of laser-triggered photolysis of silver trifluoroacetate to generate trifluoromethyl radicals, confined only to the laser-irradiated region, leads to the selective reaction of graphene, thereby completing direct laser writing on graphene toward a spatially resolved 2D-patterned architecture.
View Article and Find Full Text PDFTwo-dimensional (2D) black phosphorus (BP) represents one of the most appealing 2D materials due to its electronic, optical, and chemical properties. Many strategies have been pursued to face its environmental instability, covalent functionalization being one of the most promising. However, the extremely low functionalization degrees and the limitations in proving the nature of the covalent functionalization still represent challenges in many of these sheet architectures reported to date.
View Article and Find Full Text PDFWe report a facile and efficient method for the covalent 2D-patterning of monolayer graphene via laser irradiation. We utilized the photo-cleavage of dibenzoylperoxide (DBPO) and optimized the subsequent radical additions to non-activated graphene up to that level where controlled covalent 2D-patterning of graphene initiated by spatially resolved laser writing is possible. The covalent 2D-functionalization of graphene, which is monitored by scanning Raman microscopy (SRM) is completely reversible.
View Article and Find Full Text PDFRational design and fabrication of graphene nanoarchitectures with multifunctionality and multidimensionality remains quite a challenge. Here, we present a synthetic sequence, based on the combination of two advanced patterned-functionalization principles, namely, laser-writing and poly(methyl methacrylate) (PMMA)-assisted lithographic processes, leading to unprecedented covalently doped graphene superlattices. Spatially resolved supratopic- and Janus-binding were periodically weaved on the graphene sheet, leading to four different types of zones with distinct chemical doping and structural properties.
View Article and Find Full Text PDFAs an emerging field of research, graphene patterning has received considerable attention because of its ability to tailor the structure of graphene and the respective properties, aiming at practical applications such as electronic devices, catalysts, and sensors. Recent efforts in this field have led to the development of a variety of different approaches to pattern graphene sheets, providing a multitude of graphene patterns with different shapes and sizes. These established patterning techniques in combination with graphene chemistry have paved the road towards highly attractive chemical patterning approaches, establishing a very promising and vigorously developing research topic.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2020
A straightforward quantification method to consistently determine the overall functionalization degree of covalently modified two-dimensional (2D) black phosphorus (BP) by Raman spectroscopy has been carried out. Indeed, the successful reductive methylation of the BP lattice using sodium intercalation compounds and exhibiting different functionalization degrees has been demonstrated by P-magic angle spinning (MAS) NMR spectroscopy. Furthermore, the correlation of P-MAS NMR spectroscopy and statistical Raman spectroscopy (SRS) revealed the first method to determine the functionalization degree of BP solely by evaluating the intensities of distinct peaks in the Raman spectra of the covalently modified material, in a similar way to the widely employed I /I ratio of graphene research.
View Article and Find Full Text PDFThe substitution of catalytic metals by -block main elements has a tremendous impact not only in the fundamentals but also in the economic and ecological fingerprint of organic reactions. Here we show that few-layer black phosphorous (FL-BP), a recently discovered and now readily available 2D material, catalyzes different radical additions to alkenes with an initial turnover frequency (TOF) up to two orders of magnitude higher than representative state-of-the-art metal complex catalysts at room temperature. The corresponding electron-rich BP intercalation compound (BPIC) KP shows a nearly twice TOF increase with respect to FL-BP.
View Article and Find Full Text PDFAvoiding and removing surface contamination is a crucial task when handling specimens in any scientific experiment. This is especially true for two-dimensional materials such as graphene, which are extraordinarily affected by contamination due to their large surface area. While many efforts have been made to reduce and remove contamination from such surfaces, the issue is far from resolved.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWCNTs) can be doped with potassium, similar to graphite, leading to intercalation compounds. These binary systems exhibit a clear metallic character. However, the entire picture of how electron doping (e-doping) modifies the SWCNTs' vibrational spectra as a function of their diameter, chirality, and metallicity is still elusive.
View Article and Find Full Text PDF