Background: The safety and efficacy of sodium-glucose cotransporter 2 (SGLT2) inhibitors in hospitalized patients are unclear.
Purpose: To evaluate outcomes of inpatient SGLT2 inhibitor use.
Data Sources: MEDLINE, Embase, Emcare, and Cochrane databases were searched through 29 May 2024.
Helical spin structures are expressions of magnetically induced chirality, entangling the dipolar and magnetic orders in materials. The recent discovery of helical van der Waals multiferroics down to the ultrathin limit raises prospects of large chiral magnetoelectric correlations in two dimensions. However, the exact nature and magnitude of these couplings have remained unknown so far.
View Article and Find Full Text PDFPolar metals are challenging to identify spectroscopically because the fingerprints of electric polarization are often obscured by the presence of screening charges. Here, we unravel unambiguous signatures of a distortive polar order buried in the Fermi sea by probing the nonlinear optical response of materials driven by tailored terahertz fields. We apply this strategy to investigate the topological crystalline insulator PbSnTe, tracking its soft phonon mode in the time domain and observing the occurrence of inversion symmetry breaking as a function of temperature.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2024
The interplay of charge, spin, lattice, and orbital degrees of freedom in correlated materials often leads to rich and exotic properties. Recent studies have brought new perspectives to bosonic collective excitations in correlated materials. For example, inelastic neutron scattering experiments revealed non-trivial band topology for magnons and spin-orbit excitons (SOEs) in a quantum magnet CoTiO (CTO).
View Article and Find Full Text PDFStrain engineering modifies the optical and electronic properties of atomically thin transition metal dichalcogenides. Highly inhomogeneous strain distributions in two-dimensional materials can be easily realized, enabling control of properties on the nanoscale; however, methods for probing strain on the nanoscale remain challenging. In this work, we characterize inhomogeneously strained monolayer MoS via Kelvin probe force microscopy and electrostatic gating, isolating the contributions of strain from other electrostatic effects and enabling the measurement of all components of the two-dimensional strain tensor on length scales less than 100 nm.
View Article and Find Full Text PDFDistinguishing between Cushing syndrome (CS) and pseudo Cushing syndrome (PCS), also known as physiological hypercortisolism, can be difficult. PCS is caused by nonneoplastic overactivity of the hypothalamic-pituitary-adrenal axis and may be secondary to a range of conditions, including obesity, physical stress, malnutrition, and chronic alcoholism, and typically results in a lesser degree of hypercortisolism and fewer clinical features than CS. Management of PCS includes treatment of the underlying cause and reassessment of hypercortisolemia following improvement in the underlying etiology, as this may result in normalization of cortisol levels.
View Article and Find Full Text PDFMoiré superlattices host a rich variety of correlated electronic phases. However, the moiré potential is fixed by interlayer coupling, and it is dependent on the nature of carriers and valleys. In contrast, it has been predicted that twisted hexagonal boron nitride (hBN) layers can impose a periodic electrostatic potential capable of engineering the properties of adjacent functional layers.
View Article and Find Full Text PDFA long-standing pursuit in materials science is to identify suitable magnetic semiconductors for integrated information storage, processing, and transfer. Van der Waals magnets have brought forth new material candidates for this purpose. Recently, sharp exciton resonances in antiferromagnet NiPS have been reported to correlate with magnetic order, that is, the exciton photoluminescence intensity diminishes above the Néel temperature.
View Article and Find Full Text PDFLong-term cryopreservation of human umbilical vein endothelial cells (HUVECs) is important and beneficial for a variety of biomedical research and applications. In this study, we investigated HUVEC's cryobiological characteristics and parameters that are indispensable for predicting and determining an optimal cooling rate to prevent lethal intracellular ice formation (IIF) and severe cell dehydration during the cryopreservation processes. The parameters include cell membrane hydraulic conductivity (i.
View Article and Find Full Text PDFNonequilibrium hidden states provide a unique window into thermally inaccessible regimes of strong coupling between microscopic degrees of freedom in quantum materials. Understanding the origin of these states allows the exploration of far-from-equilibrium thermodynamics and the development of optoelectronic devices with on-demand photoresponses. However, mapping the ultrafast formation of a long-lived hidden phase remains a longstanding challenge since the initial state is not recovered rapidly.
View Article and Find Full Text PDFBy using a reflective-echelon-based electro-optic sampling technique and a fast detector, we develop a two-dimensional terahertz (THz) spectrometer capable of shot-to-shot balanced readout of THz waveforms at a full 1-kHz repetition rate. To demonstrate the capabilities of this new detection scheme for high-throughput applications, we use gas-phase acetonitrile as a model system to acquire two-dimensional THz rotational spectra. The results show a two-order-of-magnitude speedup in the acquisition of multidimensional THz spectra when compared to conventional delay-scan methods while maintaining accurate retrieval of the nonlinear THz signal.
View Article and Find Full Text PDFThe continuous and concerted development of colloidal quantum dot light-emitting diodes over the past two decades has established them as a bedrock technology for the next generation of displays. However, a fundamental issue that limits the performance of these devices is the quenching of photoluminescence due to excess charges from conductive charge transport layers. Although device designs have leveraged various workarounds, doing so often comes at the cost of limiting efficient charge injection.
View Article and Find Full Text PDFPhotoluminescence intermittency is a ubiquitous phenomenon, reducing the temporal emission intensity stability of single colloidal quantum dots (QDs) and the emission quantum yield of their ensembles. Despite efforts to achieve blinking reduction by chemical engineering of the QD architecture and its environment, blinking still poses barriers to the application of QDs, particularly in single-particle tracking in biology or in single-photon sources. Here, we demonstrate a deterministic all-optical suppression of QD blinking using a compound technique of visible and mid-infrared excitation.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2. During the past 10 months, COVID-19 has killed over 1 million people worldwide. Under this global crisis, data sharing and management of the COVID-19 information are urgently needed and critical for researchers, epidemiologists, physicians, bioengineers, funding agencies, and governments to work together in developing new vaccines, drugs, methods, therapeutics, and strategies for the prevention and treatment of this deadly and rapidly spreading disease.
View Article and Find Full Text PDFBiobanking has been playing a crucial role in the development of new vaccines, drugs, biotechnology, and therapeutics for the prevention and treatment of a wide range of human diseases. This puts biobanks at the forefront of responding to the ongoing worldwide outbreak of the severe pandemic, coronavirus disease 2019 (COVID-19). The leading public health institutions around the world have developed and established interim policies and guidelines for researchers and biobank staff to handle the infectious biospecimens safely and adequately from COVID-19 patients.
View Article and Find Full Text PDFEndocrinol Diabetes Metab Case Rep
April 2020
Summary: Sodium/glucose co-transporter 2 (SGLT2) inhibitors are novel oral hypoglycaemic agents that are increasingly used in the management of type 2 diabetes mellitus (T2DM). They are now recommended as second-line pharmacotherapy (in conjunction with metformin) in patients with type 2 diabetes and established atherosclerotic heart disease, heart failure or chronic kidney disease due to their favourable effects on cardiovascular and renal outcomes. We report a case of a 69-year-old man who developed muscle pain, weakness and wasting after commencing the SGLT2 inhibitor empagliflozin.
View Article and Find Full Text PDFDetermination of cell hydraulic conductivity (Lp) is required to predict the optimal conditions for cell cryopreservation. One of the critical procedures associated with the determination of Lp is to measure the kinetics of cell volume change in response to a sudden cell exposure to anisosmotic media until the cells achieve an osmotic equilibrium state. To achieve accurate measurement, it should be ensured that (1) the cell osmotic equilibration process is sufficiently slow, and (2) the total cell volume change (ΔV) is much larger than the resolution of the measuring device (δ).
View Article and Find Full Text PDFThere is a need to monitor the concentration of dissolved oxygen (DO) present in the culture medium for NASA's space cell biology experiments, as well as in earth-based cell cultures. Continuous measurement of DO concentration in the cell culture medium in perfused bioreactors requires that the oxygen sensor provide adequate sensitivity and low toxicity to the cells, as well as maintain calibration over several weeks. Although there are a number of sensors for dissolved oxygen on the market and under development elsewhere, very few meet these stringent conditions.
View Article and Find Full Text PDFFor long-term growth of mammalian cells in perfused bioreactors, it is essential to monitor the concentration of dissolved oxygen (DO) present in the culture medium to ascertain the health of the cells. An optical oxygen sensor based on dynamic fluorescent quenching was developed for long-term continuous measurement of DO for NASA-designed rotating perfused bioreactors. Tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) chloride is employed as the fluorescent dye indicator.
View Article and Find Full Text PDF