Epstein-Barr virus (EBV) latency proteins EBNA1, LMP1, LMP2, and BARF1 are expressed in tumor cells of nasopharyngeal carcinoma (NPC). IgG and IgA antibody responses to these non-self tumor antigens were analyzed in NPC patients (n=125) and regional controls (n=100) by three approaches, focusing on the putative LMP1, LMP2 extracellular domains. Despite abundant IgG and IgA antibody responses to lytic antigens and EBNA1, patients had low titer (1:25-1:100) IgG to LMP1 (81.
View Article and Find Full Text PDFTo increase testing of vaccine induced humoral immunity in immune surveillance studies and vaccine trials, a rapid and simple microsphere-based multiplex assay (pentaplex) was developed for the quantitation of IgG serum antibodies directed against the Bordetella pertussis antigens: Pertussis Toxin (Ptx), Filamentous hemagglutinin (FHA), Pertactin (Prn) and to Diphtheria toxin and Tetanus toxin. All individual antigens were covalently linked to carboxylated microspheres. The method was validated with different serum panels (n=60-78 samples).
View Article and Find Full Text PDFPurpose: The aim of these studies was to develop a pretargeting strategy for CEA-expressing cancers using biologically produced bispecific monoclonal antibodies (bsMAb). The bsMAbs used in this system have affinity for the carcinoembryonic antigen on the one hand, and for indium-labeled diethylenetriaminepentaacetic acid (DTPA), on the other.
Experimental Design: Stable quadroma clones producing bsMAb MN-14xDTIn-1 were isolated.
Unlabelled: Previous studies have shown that pretargeting allows rapid visualization of renal cell carcinomas (RCC) with an (111)In-labeled bivalent peptide. For radioimmunotherapy, a beta-emitting radionuclide labeled to a bivalent peptide is required. Therapeutic efficacy of these radionuclides depends on the E(max), physical half-life, and residence time of the radiolabel in the tumor.
View Article and Find Full Text PDFPurpose: An effective pretargeting strategy was developed for renal cell carcinoma (RCC) based on a biologically produced bispecific monoclonal antibody: anti-RCCxanti-DTPA(In) (bsMAb: G250xDTIn-1). Tumour uptake of a (111)In-labelled bivalent peptide after pretargeting with bsMAb G250xDTIn-1 was relatively high compared with that in other pretargeting systems using chemically coupled F(ab')(2) fragments. Here, we investigated the effect of the bsMAb form in the pretargeting strategy.
View Article and Find Full Text PDFUnlabelled: We have developed an efficient pretargeting strategy for renal cell carcinoma (RCC) based on a biologically produced bispecific monoclonal antibody (bs-mAb). Tumor targeting with this 2-step pretargeting strategy in the NU-12 mouse RCC model was very efficient compared with other pretargeting strategies, possibly due to unique characteristics of the NU-12 tumor used in our studies. Here we describe the bs-mAb G250xDTIn-1 pretargeting strategy in 3 different RCC nude mouse models.
View Article and Find Full Text PDFPurpose: The therapeutic effect of directly labeled antibodies in solid tumors is limited, mainly due to the relatively low uptake of the radiolabeled antibody in tumors as compared with their blood level. In previous studies, we have shown that renal cell carcinoma (RCC) can be targeted very effectively with the (111)In-labeled bivalent peptide di-diethylenetriamminepentaacetic acid diDTPA-FKYK, after pretargeting the tumor with a bispecific antibody. In this study, we further developed this pretargeting approach for radioimmunotherapy of renal cell cancer.
View Article and Find Full Text PDFTo enhance the therapeutic efficacy of radioimmunotherapy of cancer, several pretargeting strategies have been developed. In pretargeted radioimmunotherapy, the tumor is pretargeted with an antibody construct that has affinity for the tumor-associated antigen on the one hand and for a radiolabeled hapten on the other. The radiolabeled hapten is administered in a later phase, preferably after the antibody construct has cleared from the circulation.
View Article and Find Full Text PDF