Publications by authors named "Frank G Glavin"

Raman spectra are examples of high dimensional data that can often be limited in the number of samples. This is a primary concern when Deep Learning frameworks are developed for tasks such as chemical species identification, quantification, and diagnostics. Open-source data are difficult to obtain and often sparse; furthermore, the collecting and curating of new spectra require expertise and resources.

View Article and Find Full Text PDF

This paper presents a new approach to classification of high-dimensional spectroscopy data and demonstrates that it outperforms other current state-of-the art approaches. The specific task we consider is identifying whether samples contain chlorinated solvents or not, based on their Raman spectra. We also examine robustness to classification of outlier samples that are not represented in the training set (negative outliers).

View Article and Find Full Text PDF