In response to the Kluyveromyces lactis zymocin, the gamma-toxin target (TOT) function of the Saccharomyces cerevisiae RNA polymerase II (pol II) Elongator complex prevents sensitive strains from cell cycle progression. Studying Elongator subunit communications, Tot1p (Elp1p), the yeast homologue of human IKK-associated protein, was found to be essentially involved in maintaining the structural integrity of Elongator. Thus, the ability of Tot2p (Elp2p) to interact with the HAT subunit Tot3p (Elp3p) of Elongator and with subunit Tot5p (Elp5p) is dependent on Tot1p (Elp1p).
View Article and Find Full Text PDFmTn3-tagging identified Kluyveromyces lactis zymocin target genes from Saccharomyces cerevisiae as TOT1-3/ELP1-3 coding for the RNA polymerase II (pol II) Elongator histone acetyltransferase (HAT) complex. tot phenotypes resulting from mTn3 tagging were similar to totDelta null alleles, suggesting loss of Elongator's integrity. Consistently, the Tot1-3/Elp1-3 proteins expressed from the mTn3-tagged genes were all predicted to be C-terminally truncated, lacking approximately 80% of Tot1p, five WD40 Tot2p repeats and two HAT motifs of Tot3p.
View Article and Find Full Text PDFTOT, the putative Kluyveromyces lactis zymocin target complex from Saccharomyces cerevisiae, is encoded by TOT1-7, six loci of which are isoallelic to RNA polymerase II (RNAPII) Elongator genes (ELP1-6). Unlike TOT1-3 (ELP1-3) and TOT5-7 (ELP5, ELP6 and ELP4 respectively), which display zymocin resistance when deleted, TOT4 (KTI12) also renders cells refractory to zymocin when maintained in multicopy or overexpressed from the GAL10 promoter. Elevated TOT4 copy number results in an intermediate tot phenotype, which includes mild sensitivities towards caffeine, Calcofluor white and elevated growth temperature, suggesting that TOT4 influences TOT/Elongator function.
View Article and Find Full Text PDF