The energy of saline gradients is a very promising source of non-intermittent renewable energy, the exploitation of which is hampered by the lack of viable technology. The most investigated harvesting methods rely on selective transport of ions or water molecules through semi-permeable or ion-selective membranes, which demonstrate limited power densities of the order of a few W m. While in the last decade, single nanofluidic objects such as nanopores of nanotubes have opened up very promising prospects with power density capabilities in the order of kW or even MW m, scale-up efforts face serious issues, as concentration polarization phenomena result in a massive loss of performance.
View Article and Find Full Text PDFWe report the resonantly enhanced radiative emission from a single SiGe quantum dot (QD), which is deterministically embedded into a bichromatic photonic crystal resonator (PhCR) at the position of its largest modal electric field by a scalable method. By optimizing our molecular beam epitaxy (MBE) growth technique, we were able to reduce the amount of Ge within the whole resonator to obtain an absolute minimum of exactly one QD, accurately positioned by lithographic methods relative to the PhCR, and an otherwise flat, a few monolayer thin, Ge wetting layer (WL). With this method, record quality (Q) factors for QD-loaded PhCRs up to Q ∼ 10 are achieved.
View Article and Find Full Text PDFImproving the brightness of single-photon sources by means of optically resonant nanoantennas is a major stake for the development of efficient nanodevices for quantum communications. We demonstrate that nanoxerography by atomic force microscopy makes possible the fast, robust and repeatable positioning of model quantum nanoemitters (nitrogen-vacancy NV centers in nanodiamonds) on a large-scale in the gap of silicon nanoantennas with a dimer geometry. By tuning the parameters of the nanoxerography process, we can statistically control the number of deposited nanodiamonds, yielding configurations down to a unique single photon emitter coupled to these high index dielectric nanoantennas, with high selectivity and enhanced brightness induced by a near-field Purcell effect.
View Article and Find Full Text PDFSi Ge is a key material in modern complementary metal-oxide-semiconductor and bipolar devices. However, despite considerable efforts in metal-silicide and -germanide compound material systems, reliability concerns have so far hindered the implementation of metal-Si Ge junctions that are vital for diverse emerging "More than Moore" and quantum computing paradigms. In this respect, the systematic structural and electronic properties of Al-Si Ge heterostructures, obtained from a thermally induced exchange between ultra-thin Si Ge nanosheets and Al layers are reported.
View Article and Find Full Text PDFNanofluidics finds its root in the study of fluids and flows at the nanoscale. Flow rate is a quantity that is both central when dealing with flows and notoriously difficult to measure experimentally at the scale of an individual nanopore or nanochannel. We show in this letter that minute flow rate can be directly measured accumulating liquid over time within the compliant membrane of a commercial piezoresistive pressure sensor.
View Article and Find Full Text PDFAn innovative method to fabricate large area (up to several squared millimeters) ultrathin (100 nm) monocrystalline silicon (Si) membranes is described. This process is based on the direct bonding of a silicon-on-insulator wafer with a preperforated silicon wafer. The stress generated by the thermal difference applied during the bonding process is exploited to produce buckling free silicon nanomembranes of large areas.
View Article and Find Full Text PDF