Two factors known to contribute to the development of myelodysplastic syndrome (MDS) and other blood cancers are (i) somatically acquired mutations in components of the spliceosome and (ii) increased inflammation. Spliceosome genes, including SF3B1, are mutated at high frequency in MDS and other blood cancers; these mutations are thought to be neomorphic or gain-of-function mutations that drive disease pathogenesis. Likewise, increased inflammation is thought to contribute to MDS pathogenesis; inflammatory cytokines are strongly elevated in these patients, with higher levels correlating with worsened patient outcome.
View Article and Find Full Text PDFAlthough a robust inflammatory response is needed to combat infection, this response must ultimately be terminated to prevent chronic inflammation. One mechanism that terminates inflammatory signaling is the production of alternative mRNA splice forms in the Toll-like receptor (TLR) signaling pathway. Whereas most genes in the TLR pathway encode positive mediators of inflammatory signaling, several, including that encoding the MyD88 signaling adaptor, also produce alternative spliced mRNA isoforms that encode dominant-negative inhibitors of the response.
View Article and Find Full Text PDFAlveolar macrophages serve as central orchestrators of inflammatory responses in the lungs, both initiating their onset and promoting their resolution. However, the mechanisms that program macrophages for these dynamic responses are not fully understood. Over 95% of all mammalian genes undergo alternative pre-mRNA splicing.
View Article and Find Full Text PDFIn this chapter, we describe methods for functional genomics studies in mouse macrophages. In particular, we describe complementary methods for gene inhibition using RNA interference (RNAi) and gene overexpression. These methods are readily amenable to medium- and high-throughput functional genomics investigations.
View Article and Find Full Text PDFSimilar to its mammalian counterparts, teleost Toll-like receptor 9 (TLR9) recognizes unmethylated CpG DNA presented in the genome of bacteria or DNA viruses and initiates signaling pathway(s) for immune responses. We have previously shown that the TLR9 pathway in grouper, an economically important teleost, can be debilitated by an inhibitory gTLR9B isoform, whose production is mediated by RNA alternative splicing. However, how does grouper TLR9 (gTLR9) signaling impinge on the RNA splicing machinery to produce gTlr9B is unknown.
View Article and Find Full Text PDFToll-like receptor 9 (TLR9) recognizes and binds unmethylated CpG motifs in DNA, which are found in the genomes of bacteria and DNA viruses. In fish, Tlr9 is highly diverse, with the number of introns ranging from 0 to 4. A fish Tlr9 gene containing two introns has been reported to express two alternatively spliced isoforms, namely gTLR9A (full-length) and gTLR9B (with a truncated C'-terminal signal transducing domain), whose regulation and function remain unclear.
View Article and Find Full Text PDFGrouper iridovirus (GIV), belonging to the Ranavirus genus of the Iridoviridae family, was demonstrated to differentially express viral genes and induce apoptosis in three non-host fish cell lines rainbow trout monocyte/macrophage (RTS11), chinook salmon embryonic (CHSE-214) and fathead minnow Epithelioma papulosum cyprinid (EPC). These cells were challenged with GIV and virus entry into all three cell lines was confirmed by the expression of viral immediate early genes. The expression of the late major capsid protein gene was detected in CHSE-214 and EPC, but not in RTS11, suggesting an earlier termination in the viral replication cycle in RTS11.
View Article and Find Full Text PDFImportance Of The Field: The term 'uveitis' covers a broad spectrum of ocular inflammation affecting the iris, ciliary body, and/or the choroid, all of which comprise the uveal tract. Severe cases of uveitis need be treated aggressively to prevent damage caused by chronic inflammation. Untreated or poorly managed cases can lead to ciliary body dysfunction, inadequate aqueous production, chorioretinal damage, and possibly blindness.
View Article and Find Full Text PDF