Publications by authors named "Frank Dienerowitz"

Single-molecule Förster resonance energy transfer (smFRET) is a key technique to observe conformational changes in molecular motors and to access the details of single-molecule static and dynamic disorder during catalytic processes. However, studying freely diffusing molecules in solution is limited to a few tens of milliseconds, while surface attachment often bears the risk to restrict their natural motion. In this paper we combine smFRET and electrokinetic trapping (ABEL trap) to non-invasively hold single FF-ATP synthases for up to 3 s within the detection volume, thereby extending the observation time by a factor of 10 as compared to Brownian diffusion without surface attachment.

View Article and Find Full Text PDF

Single-molecule Förster resonance energy transfer (smFRET) of molecular motors provides transformative insights into their dynamics and conformational changes both at high temporal and spatial resolution simultaneously. However, a key challenge of such FRET investigations is to observe a molecule in action for long enough without restricting its natural function. The Anti-Brownian ELectrokinetic Trap (ABEL trap) sets out to combine smFRET with molecular confinement to enable observation times of up to several seconds while removing any requirement of tethered surface attachment of the molecule in question.

View Article and Find Full Text PDF