The transition towards more sustainable packaging calls for improving our ability to predict, control, and inhibit microbial growth. Despite the importance of modified atmosphere packaging (MAP) in food preservation, the exact relations between MAP gases (CO, O, N) and microbial behavior are still poorly understood. Addressing this major knowledge gap requires a specific infrastructure to gain precise control over the gas composition during storage time.
View Article and Find Full Text PDFPlasma polymerization at atmospheric pressure provides an eco-friendly alternative to wet chemistry for creating antibacterial coatings for food packaging. However, the degradation of these coatings in contact with food remains underexplored. This study employs an aerosol-assisted atmospheric plasma system to deposit polyethylene glycol (PEG)-like coatings with 1 wt% zinc oxide (ZnO) nanoparticles on a polymer substrate.
View Article and Find Full Text PDFJ Environ Sci (China)
January 2025
The study of microbial hydrocarbons removal is of great importance for the development of future bioremediation strategies. In this study, we evaluated the removal of a gaseous mixture containing toluene, m-xylene, ethylbenzene, cyclohexane, butane, pentane, hexane and heptane in aerated stirred bioreactors inoculated with Rhodococcus erythropolis and operated under non-sterile conditions. For the real-time measurement of hydrocarbons, a novel systematic approach was implemented using Selected-Ion Flow Tube Mass Spectrometry (SIFT-MS).
View Article and Find Full Text PDFThe UV resistance of bacterial endospores is an important quality supporting their survival in inhospitable environments and therefore constitutes an essential driver of the ecological success of spore-forming bacteria. Nevertheless, the variability and evolvability of this trait are poorly understood. In this study, directed evolution and genetics approaches revealed that the Bacillus cereus pdaA gene (encoding the endospore-specific peptidoglycan-N-acetylmuramic acid deacetylase) serves as a contingency locus in which the expansion and contraction of short tandem repeats can readily compromise (PdaA) or restore (PdaA) the pdaA open reading frame.
View Article and Find Full Text PDFInt J Food Microbiol
August 2024
Airborne microorganisms in food processing environments pose a potential risk for food product contamination. Yet, the absence of established standards or guidelines setting quantitative limits on airborne microorganisms underscores a critical gap in current regulatory frameworks. This review seeks to explore the feasibility of establishing quantitative limits for airborne microorganisms in food processing facilities, aiming to provide evidence-based guidance to enhance food safety practices in the industry.
View Article and Find Full Text PDFWet heat treatment is a commonly applied method in the food and medical industries for the inactivation of microorganisms, and bacterial spores in particular. While many studies have delved into the mechanisms underlying wet heat killing and spore resistance, little attention has so far been dedicated to the capacity of spore-forming bacteria to tune their resistance through adaptive evolution. Nevertheless, a recent study from our group revealed that a psychrotrophic strain of the Bacillus cereus sensu lato group (i.
View Article and Find Full Text PDFVolatile organic compounds (VOCs) indicative of pork microbial spoilage can be quantified rapidly at trace levels using selected-ion flow-tube mass spectrometry (SIFT-MS). Packaging atmosphere is one of the factors influencing VOC production patterns during storage. On this basis, machine learning would help to process complex volatolomic data and predict pork microbial quality efficiently.
View Article and Find Full Text PDFThe removal of volatile organic compounds (VOCs) in air is of utmost importance to safeguard both environmental quality and human well-being. However, the low aqueous solubility of hydrophobic VOCs results in poor removal in waste gas biofilters (BFs). In this study, we evaluated the addition of (bio)surfactants in three BFs (BF1 and BF2 mixture of compost and wood chips (C + WC), and BF3 filled with expanded perlite) to enhance the removal of cyclohexane and hexane from a polluted gas stream.
View Article and Find Full Text PDFContamination with mycotoxins has been a worldwide food safety concern for several decades, and food processing has been suggested as a potential method to mitigate their presence. In this study, the influence of traditional dehulling (TD) on the mycotoxin reduction and metabolites profile of fermented white maize products obtained via natural and three controlled fermentation methods (involving Lactobacillus fermentum, Lactobacillus plantarum, and their mixed cultures) was examined. Gas chromatography coupled with high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were employed.
View Article and Find Full Text PDFIn recent years, pre-packed ready-to-eat (RTE) food products on the Belgian market have shifted to a more plant-based composition due to a variety of reasons, including consumer concerns about health, animal welfare, and sustainability. However, similar to animal-based RTE foods, plant-based RTE foods can be susceptible to the presence and outgrowth of Listeria monocytogenes (L. monocytogenes).
View Article and Find Full Text PDFCurrently, there is considerable interest in seeking an environmentally friendly technique that is neither thermally nor organic solvent-dependent for producing advanced polymer films for food-packaging applications. Among different approaches, plasma polymerization is a promising method that can deposit biodegradable coatings on top of polymer films. In this study, an atmospheric-pressure aerosol-assisted plasma deposition method was employed to develop a poly(ethylene glycol) (PEG)-like coating, which can act as a potential matrix for antimicrobial agents, by envisioning controlled-release food-packaging applications.
View Article and Find Full Text PDFSci Total Environ
December 2023
The emission of volatile organic compounds (VOCs) into the atmosphere causes negative environmental and health effects. Biofiltration is known to be an efficient and cost-effective treatment technology for the removal of VOCs in waste gas streams. However, little is known on the removal of VOC mixtures and the effect of operational conditions, particularly for hydrophobic VOCs, and on the microbial populations governing the biofiltration process.
View Article and Find Full Text PDFThe life cycle assessment (LCA) methodology currently covers a limited number of human health-related impact categories. Microbiological food safety is an essential aspect for the selection of an appropriate food production system and has been neglected in the LCA so far. A framework for the inclusion of a microbiological food safety indicator, expressed as disability-adjusted life year (DALY) value of the consumed food product to the human health damage category (end-point) was created, and applied in a case study model on the cooked-chilled meals as the ready-to-eat meals can be associated with the occurrence of foodborne illness cases and outbreaks.
View Article and Find Full Text PDFMicrobial behavior during meat storage leads to the generation of volatile organic compounds (VOCs) and unpleasant off-odors. This study focused on a novel real-time analytical method, selected-ion flow-tube mass spectrometry (SIFT-MS), to monitor VOC quality and identify spoilage indicators for fresh pork stored under different packaging atmospheres (air, 70/0/30, 70/30/0, 5/30/65, 0/30/70 - v/v% O/CO/N) at 4 °C. A comprehensive selection methodology was used to identify compounds with good instrumental data quality as well as a strong relationship with microbial growth and olfactory rejection.
View Article and Find Full Text PDFFood Sci Technol Int
October 2024
The effect of UVC (254 nm) treatment on the mould-free shelf-life of par-baked wholemeal, rye and six-grain bread was examined. Currently, these breads are par-baked, wrapped in high-density polyethylene (HDPE)-foil and transported or stored at room temperature for a couple of days before being full-baked and sold/consumed. Generally, after five days, these breads show signs of mould spoilage.
View Article and Find Full Text PDFThe non-thermal plasma (NTP) treatment of food products as an alternative for thermal processing has been investigated over the last few years. This quasi-neutral gas contains a wide variety of reactive oxygen and nitrogen species (RONS), which could be lethal for bacterial cells present in the product. However, apart from only targeting bacteria, the RONS will also interact with components present in the food matrix.
View Article and Find Full Text PDFCombined preservation methods have awakened a growing interest in low-acid pasteurized sauces under ambient storage, aiming to produce more 'natural' foods with enhanced microbial stability. However, limited information and predictive models are available to assess the microbial stability of this kind of products, for which the spoilage is mainly caused by acid-tolerant spore-forming spoilage bacteria (ATSSB). In this study, a set of growth/no growth (G/NG) models developed previously (Sun et al.
View Article and Find Full Text PDFNon-thermal plasma (NTP) is known as an effective source of a variety of reactive species generated in the gas phase. Nowadays, NTP is gaining increasing interest from the food industry as a microbial inactivation technique. In the present study the effect of inoculation method and matrix on inactivation of Salmonella Typhimurium was examined by treating spread plated agar (2.
View Article and Find Full Text PDFDriven by climate change, ear rot (FER) caused by occurs frequently in maize worldwide. In parallel, legislative regulations and increasing environmental awareness have spurred research on alternative FER biocontrol strategies. A promising group of bacterial control agents is species due to their metabolic versatility.
View Article and Find Full Text PDFThe application of minimal processing technologies has led to increased spoilage incidents in low-acid pasteurized sauces due to the outgrowth of acid-tolerant spore-forming spoilage bacteria (ATSSB). Controlling the germination and subsequent growth of ATSSB spores is vital to enhance the ambient storage stability of pasteurized sauces. This study developed and validated a set of growth/no growth (G/NG) models for spores of two ATSSB strains (Bacillus velezensis and Bacillus subtilis subsp.
View Article and Find Full Text PDFear rot (FER) caused by is one of the main fungal diseases in maize worldwide. To develop a pathogen-tailored FER resistant maize line for local implementation, insights into the virulence variability of a residing population are crucial for developing customized maize varieties, but remain unexplored. Moreover, little information is currently available on the involvement of the archetypal defense pathways in the -maize interaction using local isolates and germplasm, respectively.
View Article and Find Full Text PDFAnisakidae, marine nematodes, are underrecognized fish-borne zoonotic parasites. Studies on factors that could trigger parasites to actively migrate out of the fish are very limited. The objective of this study was to assess the impact of different environmental conditions (temperature, CO and O) on larval motility (in situ movement) and mobility (migration) in vitro.
View Article and Find Full Text PDFProper elimination of bacterial endospores in foods and food processing environment is challenging because of their extreme resistance to various stresses. Often, sporicidal treatments prove insufficient to eradicate the contaminating endospore population as a whole, and might therefore serve as a selection pressure for enhanced endospore resistance. In the sporeforming Bacillus cereus group, Bacillus weihenstephanensis is an important food spoilage organism and potential cereulide producing pathogen, due to its psychrotolerant growth ability at 7 °C.
View Article and Find Full Text PDFTogether with conducive climatic factors, poor pre-harvest practices of ethnic small-holder farmers are a major cause of the contamination of maize by Fusarium verticillioides and fumonisins. The proliferation of this field pathogen and the accumulation of its mycotoxins in post-harvest maize caused by ethnic post-harvest practices of subsistence farms have received little attention. Therefore, this study aimed to evaluate the impact of traditional harvest and post-harvest practices on the proliferation of F.
View Article and Find Full Text PDF