Mutations in the microtubule-associated protein tau (MAPT) underlie multiple neurodegenerative disorders, yet the pathophysiological mechanisms are unclear. A novel variant in MAPT resulting in an alanine to threonine substitution at position 152 (A152T tau) has recently been described as a significant risk factor for both frontotemporal lobar degeneration and Alzheimer's disease. Here we use complementary computational, biochemical, molecular, genetic and imaging approaches in Caenorhabditis elegans and mouse models to interrogate the effects of the A152T variant on tau function.
View Article and Find Full Text PDFThe aggregation of Tau protein is a hallmark of neurodegenerative diseases including Alzheimer's disease. Previously, we generated a cell model of tauopathy based on the 4-repeat domain with the FTDP-17 mutation ΔK280 (Tau) which is expressed in a regulatable fashion (tet-on). The deletion variant ΔK280 is highly amyloidogenic and forms fibrous aggregates in neuroblastoma N2a cells staining with the reporter dye Thioflavin S.
View Article and Find Full Text PDFSubcellular mislocalization of the microtubule-associated protein Tau is a hallmark of Alzheimer disease (AD) and other tauopathies. Six Tau isoforms, differentiated by the presence or absence of a second repeat or of N-terminal inserts, exist in the human CNS, but their physiological and pathological differences have long remained elusive. Here, we investigated the properties and distributions of human and rodent Tau isoforms in primary forebrain rodent neurons.
View Article and Find Full Text PDFAccumulation of Tau is a characteristic hallmark of several neurodegenerative diseases but the mode of toxic action of Tau is poorly understood. Here, we show that the Tau protein is toxic due to its aggregation propensity, whereas phosphorylation and/or missorting is not sufficient to cause neuronal dysfunction. Aggregate-prone Tau accumulates, when expressed in vitro at near-endogenous levels, in axons as spindle-shaped grains.
View Article and Find Full Text PDFWe report on a novel transgenic mouse model expressing human full-length Tau with the Tau mutation A152T (hTau(AT)), a risk factor for FTD-spectrum disorders including PSP and CBD Brain neurons reveal pathological Tau conformation, hyperphosphorylation, mis-sorting, aggregation, neuronal degeneration, and progressive loss, most prominently in area CA3 of the hippocampus. The mossy fiber pathway shows enhanced basal synaptic transmission without changes in short- or long-term plasticity. In organotypic hippocampal slices, extracellular glutamate increases early above control levels, followed by a rise in neurotoxicity.
View Article and Find Full Text PDFIntroduction: Mutations of Tau are associated with several neurodegenerative disorders. Recently, the Tau mutation A152T was described as a novel risk factor for frontotemporal dementia spectrum disorders and Alzheimer disease. In vitro Tau-A152T shows a decreased binding to microtubules and a reduced tendency to form abnormal fibers.
View Article and Find Full Text PDFThe mutant ubiquitin UBB(+1) is a substrate as well as an inhibitor of the ubiquitin-proteasome system (UPS) and accumulates in the neuropathological hallmarks of Alzheimer's disease (AD). A role for the UPS has been suggested in the generation of amyloid β (Aβ) plaques in AD. To investigate the effect of UBB(+1) expression on amyloid pathology in vivo, we crossed UBB(+1) transgenic mice with a transgenic line expressing AD-associated mutant amyloid precursor protein (APPSwe) and mutant presenilin 1 (PS1dE9), resulting in APPPS1/UBB(+1) triple transgenic mice.
View Article and Find Full Text PDFAging and neurodegeneration are often accompanied by a functionally impaired ubiquitin-proteasome system (UPS). In tauopathies and polyglutamine diseases, a mutant form of ubiquitin B (UBB(+1)) accumulates in disease-specific aggregates. UBB(+1) mRNA is generated at low levels in vivo during transcription from the ubiquitin B locus by molecular misreading.
View Article and Find Full Text PDFMutant ubiquitin (UBB(+1)) accumulates in the hallmarks of tauopathies and polyglutamine diseases. We show that the deubiquitinating enzyme YUH1 of Saccharomyces cerevisiae and its mouse and human ortholog UCH-L3 are able to hydrolyze the C-terminal extension of UBB(+1). This yields another dysfunctional ubiquitin molecule (UB(G76Y)) with biochemical properties similar to full length UBB(+1).
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder, characterized by amyloid plaque accumulation, intracellular tangles and neuronal loss in selective brain regions. The frontal cortex, important for executive functioning, is one of the regions that are affected. Here, we investigated the neurodegenerative effects of mutant human amyloid precursor protein (APP) and presenilin 1 (PS1) on frontal cortex neurons in APP/PS1KI mice, a transgenic mouse model of AD, expressing two mutations in the human APP, as well as two human PS1 mutations knocked-in into the mouse PS1 gene in a homozygous (ho) manner.
View Article and Find Full Text PDF