Publications by authors named "Frank DeRosa"

Rational design and robust formulation processes are critical for optimal delivery of mRNA by lipid nanoparticles (LNPs). Varying degrees of heterogeneity in mRNA-LNPs can affect their biophysical and functional properties. Given the profound complexity of mRNA-LNPs, it is critical to develop comprehensive and orthogonal analytical techniques for a better understanding of these formulations.

View Article and Find Full Text PDF

Background: Dynein axonemal intermediate chain 1 protein (DNAI1) plays an essential role in cilia structure and function, while its mutations lead to primary ciliary dyskinesia (PCD). Accurate quantitation of DNAI1 in lung tissue is crucial for comprehensive understanding of its involvement in PCD, as well as for developing the potential PCD therapies. However, the current protein quantitation method is not sensitive enough to detect the endogenous level of DNAI1 in complex biological matrix such as lung tissue.

View Article and Find Full Text PDF

Pulmonary delivery of mRNA via inhalation is a very attractive approach for RNA-based therapy for treatment of lung diseases. In this work, we have demonstrated successful development of an mRNA-lipid nanoparticle (LNP) dry powder product (DPP), wherein the LNPs were spray dried using hydroalcoholic solvent along with mannitol and leucine as excipients. The desired critical attributes for the DPP were accomplished by varying the excipients, lipid composition, concentration of LNPs, and weight percentage of mRNA.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) have shown great promise as delivery vehicles to transport messenger ribonucleic acid (mRNA) into cells and act as vaccines for infectious diseases including COVID-19 and influenza. The ionizable lipid incorporated within the LNP is known to be one of the main driving factors for potency and tolerability. Herein, we describe a novel family of ionizable lipids synthesized with a piperazine core derived from the HEPES Good buffer.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 variants, especially Beta and Delta, has raised concerns about the reduced protection from previous infection or vaccination based on the original Wuhan-Hu-1 (D614) virus. To identify promising regimens for inducing neutralizing titers towards new variants, we evaluated monovalent and bivalent mRNA vaccines either as primary vaccination or as a booster in nonhuman primates (NHPs). Two mRNA vaccines, D614-based MRT5500 and Beta-based MRT5500β, tested in sequential regimens or as a bivalent combination in naïve NHPs produced modest neutralizing titers to heterologous variants.

View Article and Find Full Text PDF

Recent approval of mRNA vaccines for emergency use against COVID-19 is likely to promote rapid development of mRNA-based vaccines targeting a wide range of infectious diseases. Compared to conventional approaches, this vaccine modality promises comparable potency while substantially accelerating the pace of development and deployment of vaccine doses. Already demonstrated successfully for single antigen vaccines such as for COVID-19, this technology could be optimized for complex multi-antigen vaccines.

View Article and Find Full Text PDF

Non-viral vectors offer the potential to deliver nucleic acids including mRNA and DNA into cells in vivo. However, designing materials that effectively deliver to target organs and then to desired compartments within the cell remains a challenge. Here we develop polymeric materials that can be optimized for either DNA transcription in the nucleus or mRNA translation in the cytosol.

View Article and Find Full Text PDF

Emergency use authorization of COVID vaccines has brought hope to mitigate pandemic of coronavirus disease 2019 (COVID-19). However, there remains a need for additional effective vaccines to meet the global demand and address the potential new viral variants. mRNA technologies offer an expeditious path alternative to traditional vaccine approaches.

View Article and Find Full Text PDF

mRNA technologies have the potential to transform areas of medicine, including the prophylaxis of infectious diseases. The advantages for vaccines range from the acceleration of immunogen discovery to rapid response and multiple disease target manufacturing. A greater understanding of quality attributes that dictate translation efficiency, as well as a comprehensive appreciation of the importance of mRNA delivery, are influencing a new era of investment in development activities.

View Article and Find Full Text PDF

Antibody-based drugs are a leading class of biologics used to treat a variety of diseases, including cancer. However, wide antibody implementation is hindered by manufacturing challenges and high production cost. Use of in-vitro-transcribed mRNA (IVT-mRNA) for endogenous protein expression has the potential to circumvent many of the shortcomings of antibody production and therapeutic application.

View Article and Find Full Text PDF

Fabry disease is a lysosomal storage disorder caused by the deficiency of α-galactosidase A. Enzyme deficiency results in a progressive decline in renal and cardiac function, leading to cardiomyopathy and end-stage renal disease. Current treatments available, including enzyme replacement therapies, have provided significant benefit to patients; however, unmet medical needs remain.

View Article and Find Full Text PDF

Noninvasive aerosol inhalation is an established method of drug delivery to the lung, and remains a desirable route for nucleic-acid-based therapeutics. In vitro transcribed (IVT) mRNA has broad therapeutic applicability as it permits temporal and dose-dependent control of encoded protein expression. Inhaled delivery of IVT-mRNA has not yet been demonstrated and requires development of safe and effective materials.

View Article and Find Full Text PDF

mRNA therapeutics hold great potential for treating a variety of diseases through protein-replacement, immunomodulation, and gene editing. However, much like siRNA therapy the majority of progress in mRNA delivery has been confined to the liver. Previously, we demonstrated that poly(β-amino esters), a class of degradable polymers, are capable of systemic mRNA delivery to the lungs in mice when formulated into nanoparticles with poly(ethylene glycol)-lipid conjugates.

View Article and Find Full Text PDF

RNAs are a promising class of therapeutics given their ability to regulate protein concentrations at the cellular level. Developing safe and effective strategies to deliver RNAs remains important for realizing their full clinical potential. Here, we develop lipid nanoparticle formulations that can deliver short interfering RNAs (for gene silencing) or messenger RNAs (for gene upregulation).

View Article and Find Full Text PDF

B lymphocytes regulate several aspects of immunity including antibody production, cytokine secretion, and T-cell activation; moreover, B cell misregulation is implicated in autoimmune disorders and cancers such as multiple sclerosis and non-Hodgkin's lymphomas. The delivery of messenger RNA (mRNA) into B cells can be used to modulate and study these biological functions by means of inducing functional protein expression in a dose-dependent and time-controlled manner. However, current in vivo mRNA delivery systems fail to transfect B lymphocytes and instead primarily target hepatocytes and dendritic cells.

View Article and Find Full Text PDF

Therapeutic nucleic acids hold great promise for the treatment of disease but require vectors for safe and effective delivery. Synthetic nanoparticle vectors composed of poly(β-amino esters) (PBAEs) and nucleic acids have previously demonstrated potential utility for local delivery applications. To expand this potential utility to include systemic delivery of mRNA, hybrid polymer-lipid nanoformulations for systemic delivery to the lungs were developed.

View Article and Find Full Text PDF

mRNA has broad potential for treating diseases requiring protein expression. However, mRNA can also induce an immune response with associated toxicity. Replacement of uridine bases with pseudouridine has been postulated to modulate both mRNA immunogenicity and potency.

View Article and Find Full Text PDF

Thousands of human diseases could be treated by selectively controlling the expression of specific proteins in vivo. A new series of alkenyl amino alcohol (AAA) ionizable lipid nanoparticles (LNPs) capable of delivering human mRNA with unprecedented levels of in vivo efficacy is demonstrated. This study highlights the importance of utilizing synthesis tools in tandem with biological inspiration to understand and improve nucleic acid delivery in vivo.

View Article and Find Full Text PDF

Safe and effective delivery is required for siRNA and mRNA-based therapeutics to reach their potential. Here, we report on the development of poly(glycoamidoamine) brush nanoparticles as delivery vehicles for siRNA and mRNA. These polymers were capable of significant delivery of siRNA against FVII and mRNA-encoding erythropoietin (EPO) in mice.

View Article and Find Full Text PDF

Intracellular delivery of messenger RNA (mRNA) has the potential to induce protein production for many therapeutic applications. Although lipid nanoparticles have shown considerable promise for the delivery of small interfering RNAs (siRNA), their utility as agents for mRNA delivery has only recently been investigated. The most common siRNA formulations contain four components: an amine-containing lipid or lipid-like material, phospholipid, cholesterol, and lipid-anchored polyethylene glycol, the relative ratios of which can have profound effects on the formulation potency.

View Article and Find Full Text PDF

Despite over a century of reports to the contrary, sodium methoxide has been found to react with nitric oxide (NO). The reaction, whose final organic product is sodium formate, is postulated to occur via an intermediate O-bound diazeniumdiolate [CH3O-N(O)=NO-] that decomposes to formaldehyde and nitrous oxide. Sodium formate forms from the aldehyde via a Cannizzaro reaction.

View Article and Find Full Text PDF

The synthesis and spectroscopic properties of new cyclam-type ligands 5,7-dimethyl-6-R-1,4,8,11-tetraazacyclotetradecane (L), where R is a pendant chromophore such as an anthracene derivative, are reported. These ligands were prepared according to a nickel(II) template procedure, and the X-ray crystal structures of several Ni(II) intermediates are described. Reaction of the free base ligands L with CrCl(3)x3THF resulted in facile formation of trans-[Cr(L)Cl(2)]Cl complexes, and the structures and spectroscopic characterizations of these complexes are also described.

View Article and Find Full Text PDF

Several new dinitritochromium(III) complexes of the type trans-[Cr(L)(ONO)(2)]BF(4), where L is a derivative of the macrocyclic ligand cyclam having pendant aromatic chromophores attached (L = 5,7-dimethyl-6-(substituted)-1,4,8,11-tetraazacyclotetradecane), have been prepared and characterized. Photoexcitation of aqueous solutions containing these complexes at wavelengths corresponding to the pendant chromophore absorption bands led to the generation of NO as detected by an electrochemical sensor. Photophysical data show that the expected fluorescence of the pendant chromophores is largely quenched when the macrocyclic ligand is coordinated to these Cr(III) centers, and this is interpreted in terms of fast energy transfer processes from the ligand-centered pipi states to the Cr(III)-centered ligand field states leading to subsequent cleavage of the Cr(III)-coordinated nitrito ligand.

View Article and Find Full Text PDF

The base-catalyzed reaction of nitric oxide with the Cu(II) complex Cu(DAC)2+ (DAC = 1,8-bis(9-anthracyl-methyl)-(1,4,8,11-tetraazacyclotetradecane)) leads to reduction of the metal center and the unexpected intramolecular nitrosylation of a secondary amine.

View Article and Find Full Text PDF