Publications by authors named "Frank De Hoog"

The global incidence of dengue is increasing, and many previously unaffected areas have reported local cases of the vector-borne disease in recent years. For the effective containment of local outbreaks health authorities rely on the prompt notification of new cases. However, due to severe under-reporting and misdiagnosis, non-endemic countries face difficulties in containing local outbreaks, and the possibility of dengue becoming endemic.

View Article and Find Full Text PDF

Infectious diseases are still a major global burden for modern society causing 13 million deaths annually. One way to reduce the morbidity and mortality rates from infectious diseases is through pre-emptive or targeted vaccinations. Current theoretical vaccination strategies based on contact networks, however, rely on highly specific individual contact information which is difficult and costly to obtain, in order to identify influential spreading individuals.

View Article and Find Full Text PDF

Interaction patterns at the individual level influence the behaviour of diffusion over contact networks. Most of the current diffusion models only consider direct interactions, capable of transferring infectious items among individuals, to build transmission networks of diffusion. However, delayed indirect interactions, where a susceptible individual interacts with infectious items after the infected individual has left the interaction space, can also cause transmission events.

View Article and Find Full Text PDF

Channel state information (CSI) collected during WiFi packet transmissions can be used for localization of commodity WiFi devices in indoor environments with multipath propagation. To this end, the angle of arrival (AoA) and time of flight (ToF) for all dominant multipath components need to be estimated. A two-dimensional (2D) version of the multiple signal classification (MUSIC) algorithm has been shown to solve this problem using 2D grid search, which is computationally expensive and is therefore not suited for real-time localisation.

View Article and Find Full Text PDF

A reciprocal relationship between the autocovariance of the light intensity in the source plane and in the far-field detector plane is presented in a form analogous to the classical van Cittert-Zernike theorem, but involving intensity correlation functions. A "classical" version of the reciprocity relationship is considered first, based on the assumption of circular Gaussian statistics of the complex amplitudes in the source plane. The result is consistent with the theory of Hanbury Brown-Twiss interferometry, but it is shown to be also applicable to estimation of the source size or the spatial resolution of the detector from the noise power spectrum of flat-field images.

View Article and Find Full Text PDF

Natural images tend to mostly consist of smooth regions with individual pixels having highly correlated spectra. This information can be exploited to recover hyperspectral images of natural scenes from their incomplete and noisy measurements. To perform the recovery while taking full advantage of the prior knowledge, we formulate a composite cost function containing a square-error data-fitting term and two distinct regularization terms pertaining to spatial and spectral domains.

View Article and Find Full Text PDF

A simple model for image formation in linear shift-invariant systems is considered, in which both the detected signal and the noise variance are varying slowly compared to the point-spread function of the system. It is shown that within the constraints of this model, the square of the signal-to-noise ratio is always proportional to the "volume" of the spatial resolution unit. In the case of Poisson statistics, the ratio of these two quantities divided by the incident density of the imaging particles (e.

View Article and Find Full Text PDF

It is shown that in a broad class of linear systems, including general linear shift-invariant systems, the spatial resolution and the noise satisfy a duality relationship, resembling the uncertainty principle in quantum mechanics. The product of the spatial resolution and the standard deviation of output noise in such systems represents a type of phase-space volume that is invariant with respect to linear scaling of the point-spread function, and it cannot be made smaller than a certain positive absolute lower limit. A corresponding intrinsic "quality" characteristic is introduced and then evaluated for the cases of some popular imaging systems, including computed tomography, generic image convolution and phase-contrast imaging.

View Article and Find Full Text PDF