We previously tested HER2-targeted antibody-drug conjugates (ADCs) in immunocompromised (SCID) mice, precluding evaluation of host immunity, impact on cancer stem cells (CSCs), and potential benefit when combined with PD-L1 blockade. In this study, we tested HER2-targeted ADC in two immunocompetent mouse tumor models. HER2-targeted ADC specifically inhibited the growth of HER2-expressing tumors, prolonged animal survival, and reduced HER2 and PD-L1 cells.
View Article and Find Full Text PDFPathways of human epidermal growth factor (EGF) receptors are activated upon ligand-dependent or -independent homo- or heterodimerization and their subsequent transphosphorylation. Overexpression of these receptors positively correlates with transphosphorylation rates and increased tumor growth rates. MEDI4276, an anti-human epidermal growth factor receptor 2 (HER2) biparatopic antibody-drug conjugate, has two paratopes within each antibody arm.
View Article and Find Full Text PDFObjective: O-linked N-acetylglucosamine (O-GlcNAc) is upregulated in diabetic tissues and plays a role in insulin resistance and glucose toxicity. Here, we investigated the extent of GlcNAcylation on human erythrocyte proteins and compared site-specific GlcNAcylation on erythrocyte proteins from diabetic and normal individuals.
Research Design And Methods: GlcNAcylated erythrocyte proteins or GlcNAcylated peptides were tagged and selectively enriched by a chemoenzymatic approach and identified by mass spectrometry.
The molecular mechanisms that integrate cellular polarity with tissue architecture during epithelial morphogenesis are poorly understood. Using a three-dimensional model of epithelial morphogenesis, report that the phosphatase PTEN and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] regulate the GTPase Cdc42 and the kinase aPKC to generate the apical plasma membrane domain and maintain apical-basolateral polarity.
View Article and Find Full Text PDFThe binding of chemoattractants to cognate G protein-coupled receptors activates a variety of signaling cascades that provide spatial and temporal cues required for chemotaxis. When subjected to uniform stimulation, these responses are transient, showing an initial peak of activation followed by a period of adaptation, in which activity subsides even in the presence of stimulus. A tightly regulated balance between receptor-mediated stimulatory and inhibitory pathways controls the kinetics of activation and subsequent adaptation.
View Article and Find Full Text PDFDictyostelium cells form a multicellular organism through the aggregation of independent cells. This process requires both chemotaxis and signal relay in which the chemoattractant cAMP activates adenylyl cyclase through the G protein-coupled cAMP receptor cAR1. cAMP is produced and secreted and it activates receptors on neighboring cells, thereby relaying the chemoattractant signal to distant cells.
View Article and Find Full Text PDFThe ability of a cell to detect an external chemical signal and initiate a program of directed migration along a gradient comprises the fundamental process called chemotaxis. Investigations in Dictyostelium discoideum and neutrophils have established that pleckstrin homology (PH) domain-containing proteins that bind to the PI3K products PI(3,4)P2 and PI(3,4,5)P3, such as CRAC (cytosolic regulator of adenylyl cyclase) and Akt/PKB, translocate specifically to the leading edge of chemotaxing cells. CRAC is essential for the chemoattractant-mediated activation of the adenylyl cyclase ACA, which converts ATP into cAMP, the primary chemoattractant for D.
View Article and Find Full Text PDFA hallmark of signal transduction is the dynamic and inducible post-translational modification of proteins. In addition to the well characterized phosphorylation of proteins, other modifications have been shown to be regulatory, including O-linked beta-N-acetylglucosamine (O-GlcNAc). O-GlcNAc modifies serine and threonine residues on a myriad of nuclear and cytosolic proteins, and for several proteins there appears to be a reciprocal relationship between phosphorylation and O-GlcNAc modification.
View Article and Find Full Text PDFO-linked N-acetylglucosamine (O-GlcNAc) is a ubiquitous nucleocytoplasmic protein modification that has a complex interplay with phosphorylation on cytoskeletal proteins, signaling proteins and transcription factors. O-GlcNAc is essential for life at the single cell level, and much indirect evidence suggests it plays an important role in nerve cell biology and neurodegenerative disease. Here we show the localization of O-GlcNAc Transferase (OGTase) mRNA, OGTase protein, and O-GlcNAc-modified proteins in the rat cerebellar cortex.
View Article and Find Full Text PDFPhosphatidylinositol lipids, such as PI(4,5)P2 and PI(3,4,5)P3, are key mediators in diverse intracellular signaling pathways. Two recent reports examine how the metabolism of these lipids by phosphatidylinositol 3-kinases and the PTEN 3-phosphoinositide phosphatase may coordinate G protein coupled signaling pathways during eukaryotic chemotaxis.
View Article and Find Full Text PDFPreviously, we reported that c-Myc is glycosylated by O-linked N-acetylglucosamine at Thr-58, a known phosphorylation site and a mutational hot spot in lymphomas. In this paper, we describe the production and characterization of two Thr-58 site-specific antibodies and use them to examine the modification of Thr-58 in living cells. One antibody specifically reacts with the Thr-58-glycosylated form of c-Myc, and the other reacts only with unmodified Thr-58 in c-Myc.
View Article and Find Full Text PDF