Aim: The objective of this research was to perform a pilot study to develop an automatic analysis of periapical radiographs from patients with and without periodontitis for the percentage alveolar bone loss (ABL) on the approximal surfaces of teeth using a supervised machine learning model, that is, convolutional neural networks (CNN).
Material And Methods: A total of 1546 approximal sites from 54 participants on mandibular periapical radiographs were manually annotated (MA) for a training set (n = 1308 sites), a validation set (n = 98 sites), and a test set (n = 140 sites). The training and validation sets were used for the development of a CNN algorithm.