Publications by authors named "Frank Cichos"

The processing of information is an indispensable property of living systems realized by networks of active processes with enormous complexity. They have inspired many variants of modern machine learning, one of them being reservoir computing, in which stimulating a network of nodes with fading memory enables computations and complex predictions. Reservoirs are implemented on computer hardware, but also on unconventional physical substrates such as mechanical oscillators, spins, or bacteria often summarized as physical reservoir computing.

View Article and Find Full Text PDF

Temperature fields provide a noninvasive approach for manipulating individual macromolecules in solution. Utilizing thermophoresis and other secondary effects resulting from the inhomogeneous distribution of crowding agents, one may gain valuable insights into the interactions of molecular mixtures. In this report, we examine the steady-state concentration distribution and dynamics of DNA molecules in a poly(ethylene glycol) (PEG)/water solution when exposed to localized temperature gradients generated by optical heating of a thin chrome layer at a liquid-solid boundary.

View Article and Find Full Text PDF

Through digital imaging, microscopy has evolved from primarily being a means for visual observation of life at the micro- and nano-scale, to a quantitative tool with ever-increasing resolution and throughput. Artificial intelligence, deep neural networks, and machine learning are all niche terms describing computational methods that have gained a pivotal role in microscopy-based research over the past decade. This Roadmap is written collectively by prominent researchers and encompasses selected aspects of how machine learning is applied to microscopy image data, with the aim of gaining scientific knowledge by improved image quality, automated detection, segmentation, classification and tracking of objects, and efficient merging of information from multiple imaging modalities.

View Article and Find Full Text PDF

Collective states of inanimate particles self-assemble through physical interactions and thermal motion. Despite some phenomenological resemblance, including signatures of criticality, the autonomous dynamics that binds motile agents into flocks, herds, or swarms allows for much richer behavior. Low-dimensional models have hinted at the crucial role played in this respect by perceived information, decision-making, and feedback, implying that the corresponding interactions are inevitably retarded.

View Article and Find Full Text PDF

In the last 20 years, active matter has been a highly dynamic field of research, bridging fundamental aspects of non-equilibrium thermodynamics with applications to biology, robotics, and nano-medicine. Active matter systems are composed of units that can harvest and harness energy and information from their environment to generate complex collective behaviours and forms of self-organisation. On Earth, gravity-driven phenomena (such as sedimentation and convection) often dominate or conceal the emergence of these dynamics, especially for soft active matter systems where typical interactions are of the order of the thermal energy.

View Article and Find Full Text PDF

Manipulation of nano-objects at the microscale is of great technological importance for constructing new functional materials, manipulating tiny amounts of fluids, reconfiguring sensor systems, or detecting tiny concentrations of analytes in medical screening. Here, we show that hydrodynamic boundary flows enable the trapping and manipulation of nano-objects near surfaces. We trigger thermo-osmotic flows by modulating the van der Waals and double layer interactions at a gold-liquid interface with optically generated local temperature fields.

View Article and Find Full Text PDF

Living many-body systems often exhibit scale-free collective behavior reminiscent of thermal critical phenomena. But their mutual interactions are inevitably retarded due to information processing and delayed actuation. We numerically investigate the consequences for the finite-size scaling in the Vicsek model of motile active matter.

View Article and Find Full Text PDF

The colocalization of density modulations and particle polarization is a characteristic emergent feature of motile active matter in activity gradients. We employ the active-Brownian-particle model to derive precise analytical expressions for the density and polarization profiles of a single Janus-type swimmer in the vicinity of an abrupt activity step. Our analysis allows for an optional (but not necessary) orientation-dependent propulsion speed, as often employed in force-free particle steering.

View Article and Find Full Text PDF

The interactions of autonomous microswimmers play an important role for the formation of collective states of motile active matter. We study them in detail for the common microswimmer-design of two-faced Janus spheres with hemispheres made from different materials. Their chemical and physical surface properties may be tailored to fine-tune their mutual attractive, repulsive or aligning behavior.

View Article and Find Full Text PDF

Active-particle suspensions exhibit distinct polarization-density patterns in activity landscapes, even without anisotropic particle interactions. Such polarization without alignment forces is at work in motility-induced phase separation and betrays intrinsic microscopic activity to mesoscale observers. Using stable long-term confinement of a single thermophoretic microswimmer in a dedicated force-free particle trap, we examine the polarized interfacial layer at a motility step and confirm that it does not exert pressure onto the bulk.

View Article and Find Full Text PDF

A cornerstone of the directed motion of microscopic self-propelling particles is an asymmetric particle structure defining a polarity axis along which these tiny machines move. This structural asymmetry ties the orientational Brownian motion to the microswimmers directional motion, limiting their persistence and making the long time motion effectively diffusive. Here, we demonstrate a completely symmetric thermoplasmonic microswimmer, which is propelled by laser-induced self-thermophoresis.

View Article and Find Full Text PDF

Over the past two decades, there has been a growing interest in the use of plasmonic nanoparticles as sources of heat remotely controlled by light, giving rise to the field of thermoplasmonics. The ability to release heat on the nanoscale has already impacted a broad range of research activities, from biomedicine to imaging and catalysis. Thermoplasmonics is now entering an important phase: some applications have engaged in an industrial stage, while others, originally full of promise, experience some difficulty in reaching their potential.

View Article and Find Full Text PDF

The real-time detection of objects in optical microscopy allows their direct manipulation, which has recently become a new tool for the control, e.g., of active particles.

View Article and Find Full Text PDF

Thermophoresis is a common mechanism that can drive autonomous motion of Janus particles under the right environment. Despite recent efforts to investigate the mechanism underlying the self-propulsion of thermophoretic particles, the interaction of particles with the substrate underneath the particle has remained unclear. In this work, we explore the impact of poly(-isopropylacrylamide) (PNIPAM)-functionalized substrate with various chain lengths on the active motion of a single polystyrene particle half-coated with gold (Au-PS).

View Article and Find Full Text PDF

Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people.

View Article and Find Full Text PDF

The study of the aggregation of soluble proteins into highly ordered, insoluble amyloid fibrils is fundamental for the understanding of neurodegenerative disorders. Here, we present a method for the observation of single amyloid fibrils that allows the investigation of fibril growth, secondary nucleation or fibril breakup that is typically hidden in the average ensemble. Our approach of thermophoretic trapping and rotational diffusion measurements is demonstrated for single Aβ, Aβ and pyroglutamyl-modified amyloid-β variant (pGlu-Aβ) amyloid fibrils.

View Article and Find Full Text PDF

Self-organization is the generation of order out of local interactions. It is deeply connected to many fields of science from physics, chemistry to biology, all based on physical interactions. The emergence of collective animal behavior is the result of self-organization processes as well, though they involve abstract interactions arising from sensory inputs, information processing, storage, and feedback.

View Article and Find Full Text PDF

Photon nudging allows the manipulation and confinement of individual self-propelled micro-swimmers in 2D and 3D environments using feedback controls. Presented in this second part of a two-part contribution are theoretical models that afford the characterization for the positioning distribution associated with active localization. A derivation for the optimal nudging speed and acceptance angle is given for minimal placement uncertainty.

View Article and Find Full Text PDF

Photon nudging is a new experimental method which enables the force-free manipulation and localization of individual self-propelled artificial micro-swimmers in fluidic environments. It uses a weak laser to stochastically and adaptively turn on and off the swimmer's propulsion when the swimmer, through rotational diffusion, points towards or away from its target, respectively. This contribution presents a theoretical framework for the statistics of both 2D and 3D controls.

View Article and Find Full Text PDF

We experimentally demonstrate a microscopic engine powered by the local reversible demixing of a critical mixture. We show that, when an absorbing microsphere is optically trapped by a focused laser beam in a subcritical mixture, it is set into rotation around the optical axis of the beam because of the emergence of diffusiophoretic propulsion. This behavior can be controlled by adjusting the optical power, the temperature, and the criticality of the mixture.

View Article and Find Full Text PDF

Symmetries constrain dynamics. We test this fundamental physical principle, experimentally and by molecular dynamics simulations, for a hot Janus swimmer operating far from thermal equilibrium. Our results establish scalar and vectorial steady-state fluctuation theorems and a thermodynamic uncertainty relation that link the fluctuating particle current to its entropy production at an effective temperature.

View Article and Find Full Text PDF

We report on the first microscale observation of the velocity field imposed by a nonuniform heat content along the solid-liquid boundary. We determine both radial and vertical velocity components of this thermo-osmotic flow field by tracking single tracer nanoparticles. The measured flow profiles are compared to an approximate analytical theory and to numerical calculations.

View Article and Find Full Text PDF

We investigate experimentally the efficiency of self-propelled photophoretic swimmers based on metal-coated polymer particles of different sizes. The metal hemisphere absorbs the incident laser power and converts its energy into heat, which dissipates into the environment. A phoretic surface flow arises from the temperature gradient along the particle surface and drives the particle parallel to its symmetry axis.

View Article and Find Full Text PDF