In this article, we demonstrate how the application of biophysical tools facilitates the design of robust immunoassays. The binding characteristics of the reagents used in an immunoassay determine the assay response to the analyte concentrations. We applied several biophysical methods to obtain pertinent equilibrium and kinetic coefficients and used this information in the design of a microparticle-based immunoassay for detection of neutrophil gelatinase-associated lipocalin (NGAL), which is a new diagnostic marker of acute kidney injury (AKI).
View Article and Find Full Text PDFObjectives: NGAL (Neutrophil Gelatinase-Associated Lipocalin) has emerged as a new biomarker for the identification of acute kidney injury. Reliable clinical evaluations require a simple, robust test method for NGAL, and knowledge of specimen handling and specimen stability characteristics. We evaluated the performance of a new urine NGAL assay on the ARCHITECT analyzer.
View Article and Find Full Text PDF