Publications by authors named "Frank Bordusa"

For protein evaluation of feedstuffs for ruminants, the protease test provides a solely enzymatic method for estimating ruminal protein degradation. Since plant proteins are often structured in carbohydrate complexes, the use of carbohydrase during the test might improve its accuracy. It is advisable to co-incubate protease and carbohydrase, risking that the carbohydrase activity is reduced under the influence of the protease.

View Article and Find Full Text PDF

Sirtuins are protein deacylases regulating metabolism and stress responses and implicated in aging-related diseases. Modulators of the human sirtuins 1-7 are sought as chemical tools and potential therapeutics, for example, for treatment of cancer. We were able to show that 3-aryl-mercapto-succinylated- and 3-benzyl-mercapto-succinylated peptide derivatives yield selective Sirt5 inhibitors with low nM values.

View Article and Find Full Text PDF

The dysbindin domain-containing protein 1 (DBNDD1) is a conserved protein among higher eukaryotes whose structure and function are poorly investigated so far. Here, we present the backbone and side chain nuclear magnetic resonance assignments for the human DBNDD1 protein. Our chemical-shift based secondary structure analysis reveals the human DBNDD1 as an intrinsically disordered protein.

View Article and Find Full Text PDF

Bispecific antibodies (bsAbs) were first developed in the 1960s and are now emerging as a leading class of immunotherapies for cancer treatment with the potential to further improve clinical efficacy and safety. Many different formats of bsAbs have been established in the last few years, mainly generated genetically. Here we report on a novel, flexible, and fast chemo-enzymatic, as well as purely enzymatic strategies, for generating bispecific antibody fragments by covalent fusion of two functional antibody Fab fragments (Fabs).

View Article and Find Full Text PDF

Histone deacylase 11 and human sirtuins are able to remove fatty acid-derived acyl moieties from the ε-amino group of lysine residues. Specific substrates are needed for investigating the biological functions of these enzymes. Additionally, appropriate screening systems are required for identification of modulators of enzymatic activities of HDAC11 and sirtuins.

View Article and Find Full Text PDF

Even though the human genome project showed that our DNA contains a mere 20,000 to 25,000 protein coding genes, an unexpectedly large number of these proteins remain functionally uncharacterized. A structural characterization of these "unknown" proteins may help to identify possible cellular tasks. We therefore used a combination of bioinformatics and nuclear magnetic resonance spectroscopy to structurally de-orphanize one of these gene products, the 108 amino acid human uncharacterized protein CXorf51A.

View Article and Find Full Text PDF

Ionic liquids (ILs) have gained a lot of attention as alternative solvents in many fields of science in the last two decades. It is known that the type of anion has a significant influence on the macroscopic properties of the IL. To gain insights into the molecular mechanisms responsible for these effects it is important to characterize these systems at the microscopic level.

View Article and Find Full Text PDF

Death-associated protein 1 (DAP1) is a proline-rich cytoplasmatic protein highly conserved in most eukaryotes. It has been reported to be involved in controlling cell growth and migration, autophagy and apoptosis. The presence of human DAP1 is associated to a favourable prognosis in different types of cancer.

View Article and Find Full Text PDF

Fluorescent fusion proteins are powerful tools for studying biological processes in living cells, but universal application is limited due to the voluminous size of those tags, which might have an impact on the folding, localization or even the biological function of the target protein. The designed biocatalyst trypsiligase enables site-directed linkage of small-sized fluorescence dyes on the N terminus of integral target proteins located in the outer membrane of living cells through a stable native peptide bond. The function of the approach was tested by using the examples of covalent derivatization of the transmembrane proteins CD147 as well as the EGF receptor, both presented on human HeLa cells.

View Article and Find Full Text PDF

The brain and acute leukemia cytoplasmic (BAALC; UniProt entry Q8WXS3) is a 180-residue-long human protein having six known isoforms. BAALC is expressed in either hematopoietic or neuroectodermal cells and its specific function is still to be revealed. However, as a presumably membrane-anchored protein at the cytoplasmic side it is speculated that BAALC exerts its function at the postsynaptic densities of certain neurons and might play a role in developing cytogenetically normal acute myeloid leukemia (CN-AML) when it is highly overexpressed by myeloid or lymphoid progenitor cells.

View Article and Find Full Text PDF

NMR spectroscopy at two magnetic field strengths was employed to investigate the dynamics of dimethylimidazolium dimethylphosphate ([CCIM][(CH)PO]). [CCIM][(CH)PO] is a low-melting, halogen-free ionic liquid comprising of only methyl groups. C spin-lattice relaxation rates as well as self-diffusion coefficients were measured for [CCIM][(CH)PO] as a function of temperature.

View Article and Find Full Text PDF

Site-specific incorporation of artificial functionalities into protein targets is an important tool in both basic and applied research and can be a major challenge to protein chemists. Chemical labeling methods often targeting multiple positions within a protein and therefore suffer from lack of specificity. Enzymatic protein modification is an attractive alternative due to the inherent regioselectivity and stereoselectivity of enzymes.

View Article and Find Full Text PDF

Site-specific incorporation of nonproteinogenic functionalities into protein targets is an important tool in both basic and applied research and represents a major challenge to protein chemists. Chemical labeling methods often target multiple positions within a protein and therefore suffer from a lack of specificity. Enzymatic protein modification is an attractive alternative due to the inherent regioselectivity and stereoselectivity of enzymes.

View Article and Find Full Text PDF

The application of D-stereospecific proteases (DSPs) in resolution of racemic amino acids and in the semisynthesis of proteins has been a successful strategy. The main limitation for a broader application is, however, the accessibility of suitable DSPs covering multiple substrate specificities. To identify DSPs with novel primary substrate preferences, a fast specificity screening method using the easily accessible internally quenched fluorogenic substrate aminobenzoyl-D-arginyl-D-alanyl--nitroanilide was developed.

View Article and Find Full Text PDF

Sirtuins are protein deacylases that regulate metabolism and stress responses and are implicated in aging-related diseases. Modulators of the human sirtuins Sirt1-7 are sought as chemical tools and potential therapeutics, e.g.

View Article and Find Full Text PDF

NMR spectroscopy was used to study systematically the impact of imidazolium-based ionic liquid (IL) solutions on a TAT-derived model peptide containing Xaa-Pro peptide bonds. The selected IL anions cover a wide range of the Hofmeister series of ions. Based on highly resolved one- and two-dimensional NMR spectra individual H and C peptide chemical shift differences were analysed and a classification of IL anions according to the Hofmeister series was derived.

View Article and Find Full Text PDF

Biological evolution resulted in a homochiral world in which nucleic acids consist exclusively of d-nucleotides and proteins made by ribosomal translation of l-amino acids. From the perspective of synthetic biology, however, particularly anabolic enzymes that could build the mirror-image counterparts of biological macromolecules such as l-DNA or l-RNA are lacking. Based on a convergent synthesis strategy, we have chemically produced and characterized a thermostable mirror-image polymerase that efficiently replicates and amplifies mirror-image (l)-DNA.

View Article and Find Full Text PDF

Interleukin-36α (IL-36α) is a recently characterised member of the interleukin-1 superfamily. It is involved in the pathogenesis of inflammatory arthritis in one third of psoriasis patients. By binding of IL-36α to its receptor IL-36R via the NF-κB pathway other cytokines involved in inflammatory and apoptotic cascade are activated.

View Article and Find Full Text PDF

The RF pulse scheme RN[N-CA HEHAHA]NH, which provides a convenient approach to the acquisition of different multidimensional chemical shift correlation NMR spectra leading to backbone resonance assignments, including those of the proline residues of intrinsically disordered proteins (IDPs), is experimentally demonstrated. Depending on the type of correlation data required, the method involves the generation of in-phase ((15) N)(x) magnetisation via different magnetisation transfer pathways such as H→N→CO→N, HA→CA→CO→N, H→N→CA→N and H→CA→N, the subsequent application of (15) N-(13) C(α) heteronuclear Hartmann-Hahn mixing over a period of ≈100 ms, chemical-shift labelling of relevant nuclei before and after the heteronuclear mixing step and amide proton detection in the acquisition dimension. It makes use of the favourable relaxation properties of IDPs and the presence of (1) JCαN and (2) JCαN couplings to achieve efficient correlation of the backbone resonances of each amino acid residue "i" with the backbone amide resonances of residues "i-1" and "i+1".

View Article and Find Full Text PDF

The combination of pure chemical methods with enzymatic approaches offers a kit system with maximum flexibility for site-specifically tagging proteins with a broad variety of artificial structures. Trypsiligase, a recently introduced designer enzyme for both N- and C-terminal site-specific labeling of peptides and proteins, has been used to introduce click anchors into the human protein cyclophilin 18 and the antibody Fab fragments anti-TNFα and anti-Her2. The subsequent click reactions with tetrazine or norbornene moieties lead to quantitative conversions to the corresponding dihydropyridazine products, thereby forming a stable covalent linkage between the label and the protein of interest.

View Article and Find Full Text PDF

Bioconjugates, such as antibody-drug conjugates, have gained recent attention because of their increasing use in therapeutic and diagnostic applications. Commonly used conjugation reactions based upon chemoselective reagents exhibit a number of drawbacks: most of these reactions lack regio- and stereospecificity, thus resulting in loss of protein functionality due to random modifications. Enzymes provide an obvious solution to this problem, but the intrinsic (natural) substrate specificities of existing enzymes pose severe limitations to the kind of modifications that can be introduced.

View Article and Find Full Text PDF

Although site-specific incorporation of artificial functionalities into proteins is an important tool in both basic and applied research, it can be a major challenge to protein chemists. Enzymatic protein modification is an attractive goal due to the inherent regio- and stereoselectivity of enzymes, yet their specificity remains a problem. As a result of the intrinsic reversibility of enzymatic reactions, proteinases can in principle catalyze ligation reactions.

View Article and Find Full Text PDF

Although proteases are capable of synthesizing peptide bonds via the reverse of proteolysis, they are not proficient at peptide fragment ligation. Further manipulations are needed to shift the native enzyme activity from the cleavage to the synthesis of peptides especially when longer peptides or even proteins are the target molecules of the reaction. This account reports on the synthetic potential of trypsin variants with engineered oxyanion holes mutated by proline mutations, which were designed to minimize proteolytic side reactions during peptide bond synthesis.

View Article and Find Full Text PDF

During the last decade, ionic liquids (ILs) have revealed promising properties and applications in many research fields, including biotechnology and biological sciences. The focus of this contribution is to give a critical review of the phenomena observed and current knowledge of the interactions occurring on a molecular basis. As opposed to the huge advances made in understanding the properties of proteins in ILs, complementary investigations dealing with interactions between ILs and peptides or oligopeptides are underrepresented and are mostly only of phenomenological nature.

View Article and Find Full Text PDF

The present work reports on an assessment of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy for structural investigations of peptides dissolved in aqueous ionic liquids. Highly resolved one- and two-dimensional NMR spectra are obtained that allow for complete proton resonance assignments of both the peptides as solutes and the ionic liquids as solvents. Successful application of the HR-MAS method facilitates for the first time high-resolution NMR analysis of complex ionic liquid/peptide systems at the molecular level, mainly on the basis of chemical-shift changes.

View Article and Find Full Text PDF