Publications by authors named "Frank Booth"

Extensive research has demonstrated endurance exercise to be neuroprotective. Whether these neuroprotective benefits are mediated, in part, by hepatic ketone production remains unclear. To investigate the role of hepatic ketone production on brain health during exercise, healthy 6-month-old female rats underwent viral knockdown of the rate-limiting enzyme in the liver that catalyses the first reaction in ketogenesis: 3-hydroxymethylglutaryl-CoA synthase 2 (HMGCS2).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the fifth leading cause of death in older adults, and treatment options are severely lacking. Recent findings demonstrate a strong relationship between skeletal muscle and cognitive function, with evidence supporting that muscle quality and cognitive function are positively correlated in older adults. Conversely, decreased muscle function is associated with a threefold increased risk of cognitive decline.

View Article and Find Full Text PDF

Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved.

View Article and Find Full Text PDF

Physical inactivity is the 4th leading cause of death globally and has been shown to significantly increase the risk for developing Alzheimer's Disease (AD). Recent work has demonstrated that exercise prior to breeding produces heritable benefits to the brains of offspring, suggesting that the physical activity status of previous generations could play an important role in one's brain health and their subsequent risk for neurodegenerative diseases. Thus, our study aimed to test the hypothesis that selective breeding for physical inactivity, or for high physical activity, preference produces heritable deficits and enhancements to brain health, respectively.

View Article and Find Full Text PDF

An inaugural workshop supported by "The Leo and Anne Albert Charitable Trust," was held October 4-7, 2019 in Scottsdale, Arizona, to focus on the effects of exercise on the brain and to discuss how physical activity may prevent or delay the onset of aging-related neurodegenerative conditions. The Scientific Program Committee (led by Dr. Jeff Burns) assembled translational, clinical, and basic scientists who research various aspects of the effects of exercise on the body and brain, with the overall goal of gaining a better understanding as to how to delay or prevent neurodegenerative diseases.

View Article and Find Full Text PDF

Physical activity (PA) is a non-invasive, cost-effective means of reducing chronic disease. Most US citizens fail to meet PA guidelines, and individuals experiencing chronic stress are less likely to be physically active. To better understand the barriers to maintaining active lifestyles, we sought to determine the extent to which short- versus long-term PA increases stress- and aversion-related markers in wild-type (WT) and low voluntary running (LVR) rats, a unique genetic model of low physical activity motivation.

View Article and Find Full Text PDF

Understanding the neuro-molecular mechanisms that mediate the quantity of daily physical activity (PA) level is of medical significance, given the tremendous health benefits associated with greater physical activity. Here, we examined the effects of intra-nucleus accumbens (NAc) inhibition of activator protein-1 (AP-1), an important transcriptional factor downstream of cAMP response element binding protein (CREB; a reward-related transcriptional regulator), on voluntary wheel running behavior in wild-type (WT) and low voluntary running (LVR) female rats. Transcriptome analysis of the nucleus accumbens (NAc; a brain region critical for PA reward and motivation) was performed to further determine molecular responses to intra-NAc AP-1 inhibition in these rat lines.

View Article and Find Full Text PDF

Physical inactivity is the fourth leading global cause of death and is a major contributor to metabolic and endocrine diseases. In this review we provide a current update of the past 5 years in the field as it pertains to the most prevalent and deadly chronic diseases. Despite the prevalence of physical inactivity in modern society, it remains largely overlooked relative to other comparable risk factors such as obesity, and our molecular understanding of how physical inactivity impacts metabolism is still partially unknown.

View Article and Find Full Text PDF

Objective: Endothelial nitric oxide synthase (eNOS) is a potential mediator of exercise-induced hepatic mitochondrial adaptations.

Methods: Here, male and female hepatocyte-specific eNOS knockout (eNOS ) and intact hepatic eNOS (eNOS ) mice performed voluntary wheel-running exercise (EX) or remained in sedentary cage conditions for 10 weeks.

Results: EX resolved the exacerbated hepatic steatosis in eNOS male mice.

View Article and Find Full Text PDF

Neuroinflammation is an early detectable marker of mild cognitive impairment, the transition state between normal cognition and dementia. Resistance-exercise training can attenuate the cognitive decline observed in patients with mild cognitive impairment. However, the underlying mechanisms of resistance training effects are largely unknown.

View Article and Find Full Text PDF

Mild cognitive impairment (MCI) designates the boundary area between cognitive function in natural aging and dementia, and this is viewed as a therapeutic window to prevent the occurrence of dementia. The current study investigated the neurocognitive effects of oral creatine (Cr) supplementation in young female Wistar rats that received intracerebroventricular injections of lipopolysaccharide (LPS) to mimic MCI. Neuromolecular changes within the dentate gyrus were analyzed following behavioral testing.

View Article and Find Full Text PDF

Physical inactivity is positively associated with anxiety and depression. Considering physical inactivity, anxiety, and depression each have a genetic basis for inheritance, our lab used artificial selectively bred low-voluntary running (LVR) and wild type (WT) female Wistar rats to test if physical inactivity genes selected over multiple generations would lead to an anxiety or depressive-like phenotype. We performed next generation RNA sequencing and immunoblotting on the dentate gyrus to reveal key biological functions from heritable physical inactivity.

View Article and Find Full Text PDF

Given the integral role of nucleus accumbens (NAc) cAMP response element binding protein (CREB) activity in motivational processes, the goal of the current study was to determine whether blunting chronic NAc CREB activity could rescue the low physical activity motivation of female, low voluntary running (LVR) rats. NAc CREB phosphorylation is elevated in these rats, a state previously attributed to deficits in reward valuation. It was recently shown that overexpression of the upstream CREB inhibitor, protein kinase inhibitor alpha (PKIα), increased LVR nightly running by ~threefold.

View Article and Find Full Text PDF

Estrogens are believed to enhance rodent voluntary wheel-running through medial preoptic (mPOA) estrogen receptor α (ERα) signaling, with little role attributed to estrogen receptor β (ERβ). Systemic ERβ activation has been shown to mitigate ERα driven increases in wheel-running. Therefore, the present goal was to determine whether ERβ signaling in the mPOA plays a similar modulatory role over ERα.

View Article and Find Full Text PDF

Transposable elements (TEs) are mobile DNA and constitute approximately half of the human genome. LINE-1 (L1) is the only active autonomous TE in the mammalian genome and has been implicated in a number of diseases as well as aging. We have previously reported that skeletal muscle L1 expression is lower following acute and chronic exercise training in humans.

View Article and Find Full Text PDF

Effective treatments preventing brain neuroinflammatory diseases are lacking. Resistance-exercise training (RT) ameliorates mild cognitive impairment (MCI), a forerunner to neuroinflammatory diseases. However, few studies have addressed the molecular basis by which RT abates MCI.

View Article and Find Full Text PDF

Ketogenic diets (KDs) are shown to benefit hepatic metabolism; however, their effect on the liver when combined with exercise is unknown. We investigated the effects of a KD versus a "western" diet (WD) on markers of hepatic lipid metabolism and oxidative stress in exercising rats. Male and female Wistar rats with access to voluntary running wheels were randomized to 3 groups ( = 8-14 per group): standard chow (SC; 17% fat), WD (42% fat), or KD (90.

View Article and Find Full Text PDF

Background: Physical activity and diet are well-established modifiable factors that influence chronic disease risk. We developed a selectively bred, polygenic model for high and low voluntary running (HVR and LVR, respectively) distances. After 8 generations, large differences in running distance were noted.

View Article and Find Full Text PDF

Palatability driven feeding and voluntary physical activity are mediated by and influence similar neural mechanisms, notably through the actions of opioids within the nucleus accumbens. Recent studies suggest that access to a voluntary running wheel results in sex dependent behavioral and physiological adaptations related to opioid mediated palatability-driven feeding. To explore this relationship, male and female Wistar rats were given either access to a voluntary running wheel (RUN group) or no access (SED group) for one week prior to being stereotaxically implanted with bilateral cannulae targeting the nucleus accumbens.

View Article and Find Full Text PDF

The present study examined the influence of physical activity vs. sedentary home cage conditions on baseline and opioid-driven high-fat feeding behaviors in two common strains of laboratory rats. Sprague-Dawley and Wistar rats were singly housed with either access to a voluntary running wheel (RUN) or locked-wheel (SED) for 5 weeks, before being stereotaxically implanted with bilateral cannulae targeting the nucleus accumbens.

View Article and Find Full Text PDF

Considering the current obesity epidemic is due in large part to an energy imbalance, it is crucial to explore biological mechanisms that mediate palatable high energy food intake and physical activity behavior levels. Previous research demonstrates a unique sex dependent influence of physical activity on diet preference, specifically changes in palatable high-fat diet intake. Therefore, factors of motivation may be underlying the differential effect of physical activity in male and female rats on their diet preference.

View Article and Find Full Text PDF

The original version of this article unfortunately contained mistake in Table 2 to where two directionality arrows were inverted.

View Article and Find Full Text PDF

The habenula is a small, diencephalic structure comprised of distinct subnuclei which receives inputs from the limbic forebrain and sends projections to various regions in the midbrain, making this region well positioned to influence reward and motivation. Genetic ablation of the dorsal medial habenula is known to decrease voluntary wheel-running in mice. However, the extent to which the medial habenula (MHb) mediates wheel-running motivation in the context of high or low motivation for voluntary physical activity remains to be determined.

View Article and Find Full Text PDF

A gene was sought that could reverse low voluntary running distances in a model of low voluntary wheel-running behavior. In order to confirm the low motivation to wheel-run in our model does not result from defects in reward valuation, we employed sucrose preference and conditioned place preference for voluntary wheel-access. We observed no differences between our model and wild-type rats regarding the aforementioned behavioral testing.

View Article and Find Full Text PDF