Am J Respir Cell Mol Biol
January 2014
Background: The heat shock response is widely used as a surrogate of the general protein quality control system within the cell. This system plays a significant role in aging and many protein folding diseases as well as the responses to other physical and chemical stressors.
Methods/principal Findings: In this study, a broad-based functional genomics approach was taken to identify potential regulators of the mammalian heat shock response.
Alterations in DNA methylation have been proposed as a mechanism for the complex toxicological effects of arsenic. In this study, whole-genome DNA methylation and gene expression changes were evaluated in lungs from female mice exposed for 90 days to 50 ppm arsenate (As) in drinking water. DNA methylation changes were measured using reduced representation bisulfite deep sequencing.
View Article and Find Full Text PDFMany chemicals in commerce today have undergone limited or no safety testing. To reduce the number of untested chemicals and prioritize limited testing resources, several governmental programs are using high-throughput in vitro screens for assessing chemical effects across multiple cellular pathways. In this study, metabolic clearance and plasma protein binding were experimentally measured for 35 ToxCast phase I chemicals.
View Article and Find Full Text PDFThe heat shock protein response appears to be triggered primarily by nonnative proteins accumulating in a stressed cell and results in increased expression of heat shock proteins (HSPs). Many heat shock proteins prevent protein aggregation and participate in refolding or elimination of misfolded proteins in their capacity as chaperones. Even though several mechanisms exist to regulate the abundance of cytosolic and nuclear chaperones, activation of heat shock transcription factor 1 (HSF1) is an essential aspect of the heat shock protein response.
View Article and Find Full Text PDFExposure of cells to various stresses often leads to the induction of a group of proteins called heat shock proteins (HSPs, molecular chaperones). Hsp70 is one of the most highly inducible molecular chaperones, but its expression must be maintained at low levels under physiological conditions to permit constitutive cellular activities to proceed. Heat shock transcription factor 1 (HSF1) is the transcriptional regulator of HSP gene expression, but it remains poorly understood how newly synthesized HSPs return to basal levels when HSF1 activity is attenuated.
View Article and Find Full Text PDFBackground: Heat shock factor (HSF/HSF1) not only is the transcription factor primarily responsible for the transcriptional response of cells to physical and chemical stress but also coregulates other important signaling pathways. The factor mediates the stress-induced expression of heat shock or stress proteins (HSPs). HSF/HSF1 is inactive in unstressed cells and is activated during stress.
View Article and Find Full Text PDF