The disease-induced herd immunity level [Formula: see text] is the fraction of the population that must be infected by an epidemic to ensure that a new epidemic among the remaining susceptible population is not supercritical. For a homogeneously mixing population [Formula: see text] equals the classical herd immunity level [Formula: see text], which is the fraction of the population that must be vaccinated in advance of an epidemic so that the epidemic is not supercritical. For most forms of heterogeneous mixing [Formula: see text], sometimes dramatically so.
View Article and Find Full Text PDFAlmost all epidemic models make the assumption that infection is driven by the interaction between pairs of individuals, one of whom is infectious and the other of whom is susceptible. However, in society individuals mix in groups of varying sizes, at varying times, allowing one or more infectives to be in close contact with one or more susceptible individuals at a given point in time. In this paper we study the effect of mixing groups beyond pairs on the transmission of an infectious disease in an SIR (susceptible [Formula: see text] infective [Formula: see text] recovered) model, both through a branching process approximation for the initial stages of an epidemic with few initial infectives and a functional central limit theorem for the trajectories of the numbers of infectives and susceptibles over time for epidemics with many initial infectives.
View Article and Find Full Text PDFStat Methods Med Res
September 2022
Since the beginning of the COVID-19 pandemic, the reproduction number [Formula: see text] has become a popular epidemiological metric used to communicate the state of the epidemic. At its most basic, [Formula: see text] is defined as the average number of secondary infections caused by one primary infected individual. [Formula: see text] seems convenient, because the epidemic is expanding if [Formula: see text] and contracting if [Formula: see text].
View Article and Find Full Text PDFThe COVID-19 pandemic has hit different regions differently. The current disease-induced immunity level in a region approximately equals the cumulative fraction infected, which primarily depends on two factors: (i) the initial potential for COVID-19 in the region ( ), and (ii) the preventive measures put in place. Using a mathematical model including heterogeneities owing to age, social activity and susceptibility, and allowing for time-varying preventive measures, the risk for a new epidemic wave and its doubling time are investigated.
View Article and Find Full Text PDFDespite various levels of preventive measures, in 2020, many countries have suffered severely from the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Using a model, we show that population heterogeneity can affect disease-induced immunity considerably because the proportion of infected individuals in groups with the highest contact rates is greater than that in groups with low contact rates. We estimate that if = 2.
View Article and Find Full Text PDFA Markovian Susceptible [Formula: see text] Infectious [Formula: see text] Recovered (SIR) model is considered for the spread of an epidemic on a configuration model network, in which susceptible individuals may take preventive measures by dropping edges to infectious neighbours. An effective degree formulation of the model is used in conjunction with the theory of density dependent population processes to obtain a law of large numbers and a functional central limit theorem for the epidemic as the population size [Formula: see text], assuming that the degrees of individuals are bounded. A central limit theorem is conjectured for the final size of the epidemic.
View Article and Find Full Text PDFThe outbreak of an infectious disease in a human population can lead to individuals responding with preventive measures in an attempt to avoid getting infected. This leads to changes in contact patterns. However, as we show in this paper, rational behaviour at the individual level, such as social distancing from infectious contacts, may not always be beneficial for the population as a whole.
View Article and Find Full Text PDFThis paper is concerned with the analysis of vaccination strategies in a stochastic susceptible [Formula: see text] infected [Formula: see text] removed model for the spread of an epidemic amongst a population of individuals with a random network of social contacts that is also partitioned into households. Under various vaccine action models, we consider both household-based vaccination schemes, in which the way in which individuals are chosen for vaccination depends on the size of the households in which they reside, and acquaintance vaccination, which targets individuals of high degree in the social network. For both types of vaccination scheme, assuming a large population with few initial infectives, we derive a threshold parameter which determines whether or not a large outbreak can occur and also the probability of a large outbreak and the fraction of the population infected by a large outbreak.
View Article and Find Full Text PDFWe consider a very general stochastic model for an SIR epidemic on a network which allows an individual's infectious period, and the time it takes to contact each of its neighbours after becoming infected, to be correlated. We write down the message passing system of equations for this model and prove, for the first time, that it has a unique feasible solution. We also generalise an earlier result by proving that this solution provides a rigorous upper bound for the expected epidemic size (cumulative number of infection events) at any fixed time [Formula: see text].
View Article and Find Full Text PDFJ Math Biol
September 2017
Recent years have seen a large amount of interest in epidemics on networks as a way of representing the complex structure of contacts capable of spreading infections through the modern human population. The configuration model is a popular choice in theoretical studies since it combines the ability to specify the distribution of the number of contacts (degree) with analytical tractability. Here we consider the early real-time behaviour of the Markovian SIR epidemic model on a configuration model network using a multitype branching process.
View Article and Find Full Text PDFWhen controlling an emerging outbreak of an infectious disease, it is essential to know the key epidemiological parameters, such as the basic reproduction number R0 and the control effort required to prevent a large outbreak. These parameters are estimated from the observed incidence of new cases and information about the infectious contact structures of the population in which the disease spreads. However, the relevant infectious contact structures for new, emerging infections are often unknown or hard to obtain.
View Article and Find Full Text PDFIn this paper we consider epidemic models of directly transmissible SIR (susceptible → infective → recovered) and SEIR (with an additional latent class) infections in fully-susceptible populations with a social structure, consisting either of households or of households and workplaces. We review most reproduction numbers defined in the literature for these models, including the basic reproduction number R0 introduced in the companion paper of this, for which we provide a simpler, more elegant derivation. Extending previous work, we provide a complete overview of the inequalities among these reproduction numbers and resolve some open questions.
View Article and Find Full Text PDFThis paper is concerned with a stochastic model for the spread of an SEIR (susceptible → exposed (=latent) → infective → removed) epidemic with a contact tracing scheme, in which removed individuals may name some of their infectious contacts, who are then removed if they have not been already after some tracing delay. The epidemic is analysed via an approximating, modified birth-death process, for which a type-reproduction number is derived in terms of unnamed individuals, that is shown to be infinite when the contact rate is sufficiently large. We obtain explicit results under the assumption of either constant or exponentially distributed infectious periods, including the epidemic extinction probability in the former case.
View Article and Find Full Text PDFThis paper considers metapopulation models in the general sense, i.e. where the population is partitioned into sub-populations (groups, patches,.
View Article and Find Full Text PDFNetworks offer a fertile framework for studying the spread of infection in human and animal populations. However, owing to the inherent high-dimensionality of networks themselves, modelling transmission through networks is mathematically and computationally challenging. Even the simplest network epidemic models present unanswered questions.
View Article and Find Full Text PDFThis paper is concerned with estimation of the within-household infection rate γL for a susceptible --> infective --> recovered epidemic among a population of households, from observation of the early, exponentially growing phase of an epidemic. Specifically, it is assumed that an estimate of the exponential growth rate is available from general data on an emerging epidemic and more-detailed, household-level data are available in a sample of households. Estimates of γL obtained using the final size distribution of single-household epidemics are usually biased owing to the emerging nature of the epidemic.
View Article and Find Full Text PDFA random network model which allows for tunable, quite general forms of clustering, degree correlation and degree distribution is defined. The model is an extension of the configuration model, in which stubs (half-edges) are paired to form a network. Clustering is obtained by forming small completely connected subgroups, and positive (negative) degree correlation is obtained by connecting a fraction of the stubs with stubs of similar (dissimilar) degree.
View Article and Find Full Text PDFThe basic reproduction number R(0) is one of the most important quantities in epidemiology. However, for epidemic models with explicit social structure involving small mixing units such as households, its definition is not straightforward and a wealth of other threshold parameters has appeared in the literature. In this paper, we use branching processes to define R(0), we apply this definition to models with households or other more complex social structures and we provide methods for calculating it.
View Article and Find Full Text PDFThis paper is concerned with SIR (susceptible → infected → removed) household epidemic models in which the infection response may be either mild or severe, with the type of response also affecting the infectiousness of an individual. Two different models are analysed. In the first model, the infection status of an individual is predetermined, perhaps due to partial immunity, and in the second, the infection status of an individual depends on the infection status of its infector and on whether the individual was infected by a within- or between-household contact.
View Article and Find Full Text PDFThis paper is concerned with a stochastic SIR (susceptible-->infective-->removed) model for the spread of an epidemic amongst a population of individuals, with a random network of social contacts, that is also partitioned into households. The behaviour of the model as the population size tends to infinity in an appropriate fashion is investigated. A threshold parameter which determines whether or not an epidemic with few initial infectives can become established and lead to a major outbreak is obtained, as are the probability that a major outbreak occurs and the expected proportion of the population that are ultimately infected by such an outbreak, together with methods for calculating these quantities.
View Article and Find Full Text PDFA stochastic epidemic model allowing for both mildly and severely infectious individuals is defined, where an individual can become severely infectious directly upon infection or if additionally exposed to infection. It is shown that, assuming a large community, the initial phase of the epidemic may be approximated by a suitable branching process and that the main part of an epidemic that becomes established admits a law of large numbers and a central limit theorem, leading to a normal approximation for the final outcome of such an epidemic. Effects of vaccination prior to an outbreak are studied and the critical vaccination coverage, above which only small outbreaks can occur, is derived.
View Article and Find Full Text PDFThis paper is concerned with a stochastic model for the spread of an SEIR (susceptible --> exposed (= latent) --> infective --> removed) epidemic among a population partitioned into households, featuring different rates of infection for within and between households. The model incorporates responsive vaccination and isolation policies, based upon the appearance of diagnosed cases in households. Different models for imperfect vaccine response are considered.
View Article and Find Full Text PDFThe study of epidemics on social networks has attracted considerable attention recently. In this paper, we consider a stochastic SIR (susceptible-->infective-->removed) model for the spread of an epidemic on a finite network, having an arbitrary but specified degree distribution, in which individuals also make casual contacts, i.e.
View Article and Find Full Text PDFStat Methods Med Res
October 2006
This paper is concerned with stochastic models for the spread of an epidemic among a community of households, in which individuals mix uniformly within households and, in addition, uniformly at a much lower rate within the population at large. This two-level mixing structure has important implications for the threshold behaviour of the epidemic and, consequently, for both the effectiveness of vaccination strategies for controlling an outbreak and the form of optimal vaccination schemes. A brief introduction to optimal vaccination schemes in this setting is provided by presenting a unified treatment of the simplest and most-studied case, viz.
View Article and Find Full Text PDF