Lipid domains in mammalian plasma membranes serve as platforms for specific recruitment or separation of proteins involved in various functions. Here, we have applied this natural strategy of lateral separation to functionalize lipid membranes at micrometer scale in a switchable and reversible manner. Membrane-anchored peptide nucleic acid and DNA, differing in their lipophilic moieties, partition into different lipid domains in model and biological membranes.
View Article and Find Full Text PDFProtein switches use the binding energy gained upon recognition of ligands to modulate the conformation and binding properties of protein segments. We explored whether the programmable nucleic acid mediated recognition might be used to design or mimic constraints that limit the conformational freedom of peptide segments. The aim was to design nucleic acid-peptide conjugates in which the peptide portion of the conjugate would change the affinity for a protein target upon hybridization.
View Article and Find Full Text PDFThe synthesis of homothymine PNA-oligomers can be plagued by the occurrence of a significant amount of truncation products, probably because on-resin aggregation hinders access during the coupling reactions. The use of low resin loading and the addition of the chaotropic salt KSCN in DMF allowed a partial remedy by conferring enhancements to the coupling yields. However, protection of the imide group by using O-allyl-protected thymine Fmoc-t(All) provided the most significant improvements to the yields, even in cases where the use of non-protected thymine building blocks resulted in 70% truncation products.
View Article and Find Full Text PDF