Background: Naturally occurring tRNAs contain numerous modified nucleosides. They are formed by enzymatic modification of the primary transcripts during the complex RNA maturation process. In model organisms Escherichia coli and Saccharomyces cerevisiae most enzymes involved in this process have been identified.
View Article and Find Full Text PDFThe structure of Bacillus subtilis TrmB (BsTrmB), the tRNA (m7G46) methyltransferase, was determined at a resolution of 2.1 A. This is the first structure of a member of the TrmB family to be determined by X-ray crystallography.
View Article and Find Full Text PDFThe Escherichia coli TrmB protein and its Saccharomyces cerevisiae ortholog Trm8p catalyze the S-adenosyl-L-methionine-dependent formation of 7-methylguanosine at position 46 (m7G46) in tRNA. To learn more about the sequence-structure-function relationships of these enzymes we carried out a thorough bioinformatics analysis of the tRNA:m7G methyltransferase (MTase) family to predict sequence regions and individual amino acid residues that may be important for the interactions between the MTase and the tRNA substrate, in particular the target guanosine 46. We used site-directed mutagenesis to construct a series of alanine substitutions and tested the activity of the mutants to elucidate the catalytic and tRNA-recognition mechanism of TrmB.
View Article and Find Full Text PDF