Publications by authors named "Francoise Wessner"

We discovered a chromosomal locus containing 2 toxin-antitoxin modules (TAs) with an antisense transcriptional organization in the E. faecalis clinical isolate V583. These TAs are homologous to the type I txpA-ratA system and the type II mazEF, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Enterococcus faecalis is a major cause of hospital-associated infections, and researchers aimed to understand its genetic transcription better.
  • They utilized a modified RNA-seq method to identify and map 559 transcription start sites and 352 processing sites, validating their findings by referencing Escherichia coli.
  • The study also uncovered 85 new potential regulatory RNAs and 72 transcriptional antisense organizations, enhancing our understanding of bacterial RNA and its regulatory processes.
View Article and Find Full Text PDF

Enterococcus faecalis is a commensal bacterium and a major opportunistic human pathogen. In this study, we combined in silico predictions with a novel 5'RACE-derivative method coined '5'tagRACE', to perform the first search for non-coding RNAs (ncRNAs) encoded on the E. faecalis chromosome.

View Article and Find Full Text PDF

Gram-positive bacteria secrete a variety of peptides that are often subjected to posttranslational modifications and that are either antimicrobials or pheromones involved in bacterial communication. Our objective was to identify peptides secreted by Streptococcus thermophilus, a nonpathogenic bacterium widely used in dairy technology in association with other bacteria, and to understand their potential roles in cell-cell communication. Using reverse-phase liquid chromatography, mass spectrometry, and Edman sequencing, we analyzed the culture supernatants of three S.

View Article and Find Full Text PDF

Detailed structural analysis of Lactococcus lactis peptidoglycan was achieved by identification of its constituent muropeptides separated by reverse phase high-performance liquid chromatography. Modification of the classical elution buffer allowed direct and sensitive analysis of the purified muropeptides by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The structures of 45 muropeptides were assigned for L.

View Article and Find Full Text PDF

The peptidoglycan hydrolase (PGH) complement of Lactococcus lactis was identified by amino acid sequence similarity searching of the L. lactis IL-1403 complete genome sequence. Five PGHs that are not encoded by prophages were detected, including the previously characterized AcmA and AcmB proteins.

View Article and Find Full Text PDF

A gene encoding a putative peptidoglycan hydrolase, named acmB, which is a paralogue of the major autolysin acmA gene, was identified in the Lactococcus lactis genome sequence. The acmB gene is transcribed in L. lactis MG1363 and its expression is modulated during cellular growth.

View Article and Find Full Text PDF