Although the multiplication of bacteriophages (phages) has a substantial impact on the biosphere, comparatively little is known about how the external environment affects phage production. Here we report that sub-lethal concentrations of certain antibiotics can substantially stimulate the host bacterial cell's production of some virulent phage. For example, a low dosage of cefotaxime, a cephalosporin, increased an uropathogenic Escherichia coli strain's production of the phage PhiMFP by more than 7-fold.
View Article and Find Full Text PDFAmong the most numerous objects in the biosphere, phages show enormous diversity in morphology and genetic content. We have sequenced 7 T4-like phages and compared their genome architecture. All seven phages share a core genome with T4 that is interrupted by several hyperplastic regions (HPRs) where most of their divergence occurs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2005
Tailed bacteriophages are the most abundant biological entities in marine environments. However, most of these marine phages are uncharacterized because few of their hosts have been cultivated. To learn more about such phages, we designed a set of degenerate PCR primers for phage T4 g23, which encodes the major capsid protein in all of the T4-type phages, an important family of the tailed phage.
View Article and Find Full Text PDFRB49 is a virulent bacteriophage that infects Escherichia coli. Its virion morphology is indistinguishable from the well-known T-even phage T4, but DNA hybridization indicated that it was phylogenetically distant from T4 and thus it was classified as a pseudo-T-even phage. To further characterize RB49, we randomly sequenced small fragments corresponding to about 20% of the approximately 170-kb genome.
View Article and Find Full Text PDF