Spectral photon-counting computed tomography (SPCCT) is a new technique with the capability to provide mono-energetic (monoE) images with high signal to noise ratio. We demonstrate the feasibility of SPCCT to characterize at the same time cartilage and subchondral bone cysts (SBCs) without contrast agent in osteoarthritis (OA). To achieve this goal, 10 human knee specimens (6 normal and 4 with OA) were imaged with a clinical prototype SPCCT.
View Article and Find Full Text PDFThe development of treatment strategies for skeletal diseases relies on the understanding of bone mechanical properties in relation to its structure at different length scales. At the microscale, indention techniques can be used to evaluate the elastic, plastic, and fracture behaviour of bone tissue. Here, we combined in situ high-resolution SRµCT indentation testing and digital volume correlation to elucidate the anisotropic crack propagation, deformation, and fracture of ovine cortical bone under Berkovich and spherical tips.
View Article and Find Full Text PDFTo propose a new multimodal imaging agent targeting amyloid-β (Aβ) plaques in Alzheimer's disease. A new generation of hybrid contrast agents, based on gadolinium fluoride nanoparticles grafted with a pentameric luminescent-conjugated polythiophene, was designed, extensively characterized and evaluated in animal models of Alzheimer's disease through MRI, two-photon microscopy and synchrotron x-ray phase-contrast imaging. Two different grafting densities of luminescent-conjugated polythiophene were achieved while preserving colloidal stability and fluorescent properties, and without affecting biodistribution.
View Article and Find Full Text PDFCone-beam computed tomography is becoming more and more popular in applications such as 3D dental imaging. Iterative methods compared to the standard Feldkamp algorithm have shown improvements in image quality of reconstruction of low-dose acquired data despite their long computing time. An interesting aspect of iterative methods is their ability to include prior information such as sparsity-constraint.
View Article and Find Full Text PDFWhite-matter injury leads to severe functional loss in many neurological diseases. Myelin staining on histological samples is the most common technique to investigate white-matter fibers. However, tissue processing and sectioning may affect the reliability of 3D volumetric assessments.
View Article and Find Full Text PDFWhile numerous transgenic mouse strains have been produced to model the formation of amyloid-β (Aβ) plaques in the brain, efficient methods for whole-brain 3D analysis of Aβ deposits have to be validated and standardized. Moreover, routine immunohistochemistry performed on brain slices precludes any shape analysis of Aβ plaques, or require complex procedures for serial acquisition and reconstruction. The present study shows how in-line (propagation-based) X-ray phase-contrast tomography (XPCT) combined with ethanol-induced brain sample dehydration enables hippocampus-wide detection and morphometric analysis of Aβ plaques.
View Article and Find Full Text PDFPurpose: Computed tomography (CT) is a technique of choice to image bone structure at different scales. Methods to enhance the quality of degraded reconstructions obtained from low-dose CT data have shown impressive results recently, especially in the realm of supervised deep learning. As the choice of the loss function affects the reconstruction quality, it is necessary to focus on the way neural networks evaluate the correspondence between predicted and target images during the training stage.
View Article and Find Full Text PDFBackground: Dual-energy computed tomography has shown a great interest for musculoskeletal pathologies. Photon-counting spectral computed tomography (PCSCT) can acquire data in multiple energy bins with the potential to increase contrast, especially for soft tissues. Our objectives were to assess the value of PCSST to characterise cartilage and to extract quantitative measures of subchondral bone integrity.
View Article and Find Full Text PDFSingle-pixel imaging acquires an image by measuring its coefficients in a transform domain, thanks to a spatial light modulator. However, as measurements are sequential, only a few coefficients can be measured in the real-time applications. Therefore, single-pixel reconstruction is usually an underdetermined inverse problem that requires regularization to obtain an appropriate solution.
View Article and Find Full Text PDFBone is an intriguingly complex material. It combines high strength, toughness and lightweight via an elaborate hierarchical structure. This structure results from a biologically driven self-assembly and self-organisation, and leads to different deformation mechanisms along the length scales.
View Article and Find Full Text PDFSingle-pixel cameras that measure image coefficients have various promising applications, in particular for hyper-spectral imaging. Here, we investigate deep neural networks that when fed with experimental data can output high-quality images in real time. Assuming that the measurements are corrupted by mixed Poisson-Gaussian noise, we propose to map the raw data from the measurement domain to the image domain based on a Tikhonov regularization.
View Article and Find Full Text PDFThethree-dimensional (3D) imaging and quantitative analysis of bone microvasculature are important to describe angiogenesis involvement in bone metastatic processes. Here, we propose an algorithm based on marker-controlled watershed for the 3D segmentation of vessels and bone in mouse bone imaged with a contrast agent using synchrotron radiation micro-computed tomography (SR-CT). Markers were generated using hysteresis thresholding and morphological filters, and the control surface was constructed using the monogenic signal phase asymmetry.
View Article and Find Full Text PDFViscoelasticity is an essential property of bone related to fragility, which is altered in aging and bone disease. Bone viscoelastic behavior is attributed to several mechanisms involving collagen and mineral properties, porosities, and bone hierarchical tissue organization. We aimed to assess the relationships between cortical bone viscoelastic damping measured with Resonant Ultrasound Spectroscopy (RUS), microstructural and compositional characteristics.
View Article and Find Full Text PDFThere is a growing interest in developing 3D microscopy for the exploration of thick biological tissues. Recently, 3D X-ray nanocomputerised tomography has proven to be a suitable technique for imaging the bone lacunocanalicular network. This interconnected structure is hosting the osteocytes which play a major role in maintaining bone quality through remodelling processes.
View Article and Find Full Text PDFRecently, increasing attention has been given to the study of osteocytes, the cells that are thought to play an important role in bone remodeling and in the mechanisms of bone fragility. The interconnected osteocyte system is deeply embedded inside the mineralized bone matrix and lies within a closely fitted porosity known as the lacuno-canalicular network. However, quantitative data on human samples remain scarce, mostly measured in 2D, and there are gaps to be filled in terms of spatial resolution.
View Article and Find Full Text PDFWith ageing and various diseases, the vascular pore volume fraction (porosity) in cortical bone increases, and the morphology of the pore network is altered. Cortical bone elasticity is known to decrease with increasing porosity, but the effect of the microstructure is largely unknown, while it has been thoroughly studied for trabecular bone. Also, popular micromechanical models have disregarded several micro-architectural features, idealizing pores as cylinders aligned with the axis of the diaphysis.
View Article and Find Full Text PDFPurpose: The objective of this technical note was to investigate the accuracy of proton stopping power relative to water (RSP) estimation using a novel dual-layer, dual-energy computed tomography (DL-DECT) scanner for potential use in proton therapy planning. DL-DECT allows dual-energy reconstruction from scans acquired at a single x-ray tube voltage V by using two-layered detectors.
Methods: Sets of calibration and evaluation inserts were scanned at a DL-DECT scanner in a custom phantom with variable diameter D (0 to 150 mm) at V of 120 and 140 kV.
We have developed a broadband time-resolved multi-channel near-infrared spectroscopy system that can monitor the physiological responses of the adult human brain. This system is composed of a supercontinuum laser for the source part and of an intensified charge-coupled device camera coupled with an imaging spectrometer for the detection part. It allows the detection of the spectral, from 600 to 900 nm, and spatial dimensions as well as the arrival time of photon information simultaneously.
View Article and Find Full Text PDF