Publications by authors named "Francoise Pecker"

Cardiomyopathy caused by lamin A/C gene (LMNA) mutations (hereafter referred as LMNA cardiomyopathy) is an anatomic and pathologic condition associated with muscular and electrical dysfunction of the heart, often leading to heart failure-related disability. There is currently no specific therapy available for patients that target the molecular pathophysiology of LMNA cardiomyopathy. We showed here an increase in oxidative stress levels in the hearts of mice carrying LMNA mutation, associated with a decrease of the key cellular antioxidant glutathione (GHS).

View Article and Find Full Text PDF

Unlabelled: Alcoholic and nonalcoholic fatty liver disease (ALD and NAFLD) are the predominant causes of liver-related mortality in Western countries. We have shown that limiting classical (M1) Kupffer cell (KC) polarization reduces alcohol-induced liver injury. Herein, we investigated whether favoring alternatively activated M2 KCs may protect against ALD and NAFLD.

View Article and Find Full Text PDF

Dominant inherited Emery-Dreifuss muscular dystrophy and limb-girdle muscular dystrophy type 1B are due to mutations in the LMNA gene encoding lamin A/C and present similar life-threatening cardiac disease, the early diagnosis of which lacks reliable biomarkers. Glutathione depletion characterizes subjects with cardiac diseases of non-genetic aetiology. We examined blood glutathione in 22 LMNA-mutated subjects without altered left ventricular ejection fraction (LVEF>40%) measured by conventional echocardiography.

View Article and Find Full Text PDF

Activation of Kupffer cells plays a central role in the pathogenesis of alcoholic liver disease. Because cannabinoid CB2 receptors (CB2) display potent anti-inflammatory properties, we investigated their role in the pathogenesis of alcoholic liver disease, focusing on the impact of CB2 on Kupffer cell polarization and the consequences on liver steatosis. Wild-type (WT) mice fed an alcohol diet showed an induction of hepatic classical (M1) and alternative (M2) markers.

View Article and Find Full Text PDF

Oxidative stress contributes to the pathogenesis of Duchenne muscular dystrophy (DMD). Although they have been a model for DMD, mdx mice exhibit slowly developing cardiomyopathy. We hypothesized that disease process was delayed owing to the development of an adaptive mechanism against oxidative stress, involving glutathione synthesis.

View Article and Find Full Text PDF

Background: Recently, concerns have been raised about a possible lack of sensitivity of biomarkers to detect left ventricular (LV) dysfunction in patients with myopathies. We examined the ability of the N-terminal brain natriuretic peptide (NT-proBNP) to detect LV or right ventricular (RV) dysfunction in patients with lamin A/C (LMNA) gene mutations.

Methods: We prospectively measured plasma NT-proBNP in consecutive patients with documented LMNA mutations and age-sex matched controls.

View Article and Find Full Text PDF

Background: The tripeptide glutathione (L-gamma-glutamyl-cysteinyl-glycine) is essential to cell survival, and deficiency in cardiac and systemic glutathione relates to heart failure progression and cardiac remodelling in animal models. Accordingly, we investigated cardiac and blood glutathione levels in patients of different functional classes and with different structural heart diseases.

Methods: Glutathione was measured using standard enzymatic recycling method in venous blood samples obtained from 91 individuals, including 15 healthy volunteers and 76 patients of New York Heart Association (NYHA) functional class I to IV, undergoing cardiac surgery for coronary artery disease, aortic stenosis or terminal cardiomyopathy.

View Article and Find Full Text PDF

Post-myocardial infarction (MI) heart failure is a major public health problem in Western countries and results from ischemia/reperfusion (IR)-induced cell death, remodeling, and contractile dysfunction. Ex vivo studies have demonstrated the cardioprotective anti-inflammatory effect of the cannabinoid type 2 (CB2) receptor agonists within hours after IR. Herein, we evaluated the in vivo effect of CB2 receptors on IR-induced cell death, fibrosis, and cardiac dysfunction and investigated the target role of cardiac myocytes and fibroblasts.

View Article and Find Full Text PDF

Sphingomyelinases (SMases) hydrolyse sphingomyelin, releasing ceramide and creating a cascade of bioactive lipids. These lipids include sphingosine and sphingosine-1-phosphate, all of which have a specific signalling capacity. Sphingomyelinase activation occurs in different cardiovascular system cell types, namely cardiac myocytes, endothelial and vascular smooth muscle cells, mediating cell proliferation, cell death, and contraction of cardiac and vascular myocytes.

View Article and Find Full Text PDF

Tumor necrosis factor alpha (TNFalpha) plays a major role in chronic heart failure, signaling through two different receptor subtypes, TNFR1 and TNFR2. Our aim was to further delineate the functional role and signaling pathways related to TNFR1 and TNFR2 in cardiac myocytes. In cardiac myocytes isolated from control rats, TNFalpha induced ROS production, exerted a dual positive and negative action on [Ca(2+)] transient and cell fractional shortening, and altered cell survival.

View Article and Find Full Text PDF

Deficiency in cellular thiol tripeptide glutathione (L-gamma glutamyl-cysteinyl-glycine) determines the severity of several chronic and inflammatory human diseases that may be relieved by oral treatment with the glutathione precursor N-acetylcysteine (NAC). Here, we showed that the left ventricle (LV) of human failing heart was depleted in total glutathione by 54%. Similarly, 2-month post-myocardial infarction (MI) rats, with established chronic heart failure (CHF), displayed deficiency in LV glutathione.

View Article and Find Full Text PDF

We have recently demonstrated that in human heart, beta2-adrenergic receptors (beta2-ARs) are biochemically coupled not only to the classical adenylyl cyclase (AC) pathway but also to the cytosolic phospholipase A2 (cPLA2) pathway (Pavoine, C., Behforouz, N., Gauthier, C.

View Article and Find Full Text PDF

Background: Studies in isolated cardiomyocytes showed that replenishment in cellular glutathione, achieved with the glutathione precursor N-acetylcysteine (NAC), abrogated deleterious effects of tumor necrosis factor-alpha (TNF-alpha).

Methods And Results: We examined the ability of NAC to limit the progression of cardiac injury in the rat model of hypertension, induced by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) (50 mg/kg per day SC) and high-salt diet (HS) (8% NaCl). Four-week HS/L-NAME administration induced hypertension (193+/-8 versus 122+/-4 mm Hg for low-salt diet [LS] group) and left ventricular (LV) dysfunction, revealed by echocardiography and characterized by decreased LV shortening fraction (38+/-2% versus 49+/-4% for LS group; P<0.

View Article and Find Full Text PDF

Background: The negative effect of tumor necrosis factor-alpha (TNF-alpha) on heart contraction, which is mediated by sphingosine, is a major component in heart failure. Because the cellular level of glutathione may limit sphingosine production via the inhibition of the Mg-dependent neutral sphingomyelinase (N-SMase), we hypothesized that cardiac glutathione status might determine the negative contractile response to TNF-alpha.

Methods And Results: We examined the effects of TNF-alpha in isolated cardiomyocytes obtained from control rats or rats that were given the glutathione precursor N-acetylcysteine (NAC, 100 mg IP per animal).

View Article and Find Full Text PDF

We have recently established that enhancement of intracellular calcium cycling and contraction in response to beta2-adrenergic receptor (beta2-AR) stimulation exclusively relies on the activation of the cytosolic phospholipase A2 (cPLA2) and arachidonic acid production, via a pertussis toxin-sensitive G protein (possibly Gi), in embryonic chick cardiomyocytes. We aimed to investigate the relevance of the beta2-AR/Gi/cPLA2 pathway in the human myocardium. In left ventricular biopsies obtained from explanted hearts, beta2-AR stimulation exerted either an inhibition of cPLA2 that was insensitive to pertussis toxin (PTX) treatment, or an activation of cPLA2, sensitive to PTX treatment.

View Article and Find Full Text PDF

Objectives: Severe myocyte alterations, characterized by enlarged myocytes and myolysis, is observed in fibrillating and dilated atria and contributes to atrial fibrillation. The aim of this study was to determine the nature of this cellular remodeling process and factors involved in its regulation.

Methods: In vivo, contractile proteins were studied in 24 human right atrial specimens by means of immunohistochemical techniques.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF)-alpha has a biphasic effect on heart contractility and stimulates phospholipase A2 (PLA2) in cardiomyocytes. Because arachidonic acid (AA) exerts a dual effect on intracellular Ca2+ concentration ([Ca2+]i) transients, we investigated the possible role of AA as a mediator of TNF-alpha on [Ca2+]i transients and contraction with electrically stimulated adult rat cardiac myocytes. At a low concentration (10 ng/ml) TNF-alpha produced a 40% increase in the amplitude of both [Ca2+]i transients and contraction within 40 min.

View Article and Find Full Text PDF