The structure of a thaumatin-like protein from banana (Musa acuminata) fruit, an allergen with antifungal properties, was solved at 1.7-A-resolution, by X-ray crystallography. Though the banana protein exhibits a very similar overall fold as thaumatin it markedly differs from the sweet-tasting protein by the presence of a surface exposed electronegative cleft.
View Article and Find Full Text PDFPig pancreatic alpha-amylase (PPA), an enzyme belonging to the alpha-amylase family, is involved in the degradation of starch. Like some other members of this family, PPA requires chloride to reach maximum activity levels. To further explain the mechanism of chloride activation, a crystal of wild-type PPA soaked with maltopentaose using a chloride-free buffer was analyzed by X-ray crystallography.
View Article and Find Full Text PDFThe X-ray structure analysis of a crystal of pig pancreatic alpha-amylase soaked with a rho-nitrophenyl-alpha-D-maltoside (pNPG2) substrate showed a pattern of electron density corresponding to the binding of a rho-nitrophenol unit at subsite -2 of the active site. Binding of the product to subsite -2 after hydrolysis of the pNPG2 molecules, may explain the low catalytic efficiency of the hydrolysis of pNPG2 by PPA. Except a small movement of the segment from residues 304-305 the typical conformational changes of the "flexible loop" (303-309), that constitutes the surface edge of the substrate binding cleft, were not observed in the present complex structure.
View Article and Find Full Text PDFThe xylanase inhibitor protein I (XIP-I) from wheat Triticum aestivum is the prototype of a novel class of cereal protein inhibitors that inhibit fungal xylanases belonging to glycoside hydrolase families 10 (GH10) and 11 (GH11). The crystal structures of XIP-I in complex with Aspergillus nidulans (GH10) and Penicillium funiculosum (GH11) xylanases have been solved at 1.7 and 2.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2004
Endo-(1,4)-beta-xylanases of plant and fungal origin play an important role in the degradation of arabinoxylans. Two distinct classes of proteinaceous endoxylanase inhibitors, the Triticum aestivum xylanase inhibitor (TAXI) and the xylanase inhibitor protein (XIP), have been identified in cereals. Engineering of proteins in conjunction with enzyme kinetics, thermodynamic, real-time interaction, and X-ray crystallographic studies has provided knowledge on the mechanism of inhibition of XIP-I towards endoxylanases.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2004
Alpha-amylases are ubiquitous proteins which play an important role in the carbohydrate metabolism of microorganisms, animals and plants. Living organisms use protein inhibitors as a major tool to regulate the glycolytic activity of alpha-amylases. Most of the inhibitors for which three-dimensional (3-D) structures are available are directed against mammalian and insect alpha-amylases, interacting with the active sites in a substrate-like manner.
View Article and Find Full Text PDFThe structural X-ray map of a pig pancreatic alpha-amylase crystal soaked (and flash-frozen) with a maltopentaose substrate showed a pattern of electron density corresponding to the binding of oligosaccharides at the active site and at three surface binding sites. The electron density region observed at the active site, filling subsites-3 through-1, was interpreted in terms of the process of enzyme-catalyzed hydrolysis undergone by maltopentaose. Because the expected conformational changes in the "flexible loop" that constitutes the surface edge of the active site were not observed, the movement of the loop may depend on aglycone site being filled.
View Article and Find Full Text PDFA novel class of proteinaceous inhibitors exhibiting specificity towards microbial xylanases has recently been discovered in cereals. The three-dimensional structure of xylanase inhibitor protein I (XIP-I) from wheat (Triticum aestivum, var. Soisson) was determined by X-ray crystallography at 1.
View Article and Find Full Text PDFCamelids produce functional antibodies devoid of light chains and CH1 domains. The antigen-binding fragment of such heavy chain antibodies is therefore comprised in one single domain, the camelid heavy chain antibody VH (VHH). Here we report on the structures of three dromedary VHH domains in complex with porcine pancreatic alpha-amylase.
View Article and Find Full Text PDF